glsm: Saturated Model Log-Likelihood for Multinomial Outcomes
When the response variable Y takes one of R > 1 values, the function 'glsm()' computes the maximum likelihood estimates (MLEs) of the parameters under four models: null, complete, saturated, and logistic. It also calculates the log-likelihood values for each model. This method assumes independent, non-identically distributed variables. For grouped data with a multinomial outcome, where observations are divided into J populations, the function 'glsm()' provides estimation for any number K of explanatory variables.
Version: |
0.0.0.6 |
Depends: |
R (≥ 3.5.0) |
Imports: |
stats, dplyr (≥ 1.0.0), ggplot2 (≥ 1.0.0), VGAM (≥ 1.0.0), plyr |
Published: |
2025-07-14 |
Author: |
Jorge Villalba
[aut, cre],
Humberto Llinas
[aut],
Jorge Borja [aut],
Jorge Tilano
[aut] |
Maintainer: |
Jorge Villalba <jvillalba at utb.edu.co> |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
Citation: |
glsm citation info |
Materials: |
README |
CRAN checks: |
glsm results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=glsm
to link to this page.