Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—lII
A Review of TUG98

Quit

> > °

K. S. S. Nambooripad
Center for Mathematical Sciences, Trivandrum
email: kssn@vsnl.com

C. V. Radhakrishnan
River Valley Technologies, Trivandrum
email: cvr@river-valley.com

R. Rajendran
National Institute of Communicable Diseases
Shertallai, Kerala

A. R. Rajan
Department of Mathematics, Univ. of Kerala, Trivandrum
email: arrajan@univker.ernet.in
S. R. P. Nayar
Department of Physics, Univ. of Kerala, Trivandrum
email: srp@md2.vsnl.net.in
E. Krishnan
University College, Trivandrum
Kaveh Bazargan
Focal Image (India) Ltd., Trivandrum
email: kaveh@focal.demon.co.uk
R. K. Chettiyar
Center for Mathematical Sciences, Trivandrum

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Editorial

The Cathedral and the Bazaar

Book Design for X Users—lI
A Review of TUG98
Quit

< > 2> °

mailto:kssn@vsnl.com
mailto:cvr@river-valley.com
mailto:arrajan@univker.ernet.in
mailto:srp@md2.vsnl.net.in
mailto:kaveh@focal.demon.co.uk

C. V. Rajagopal

University Observatory, Trivandrum

email: cvr@vsnl.com
P. Ramesh Kumar

School of Applicable Mathematics, M. G. Univ., Kottayam
A. Jayaram

Thomson Press (India) Ltd., Chennai

email: tpchenai@md?2.vsnl.net.in

K. S. S. Nambooripad

TUGIndia Journal is the quarterly publication of IndiapX Users
Group. The jounrnal will be distributed to all its members in electronic
form (PoFformat) once in every three months.

(©1999 Indian EX Users Group. Published by the Secretary, Indian
TeX Users Groupirc 24/548,kriPA, Sastha Gardens, Thycaud, Tri-
vandrum, India for and on behalf of Indiag Users Group.

email: tugindia@river-valley.com

URL: http://www.river-valley.com/tug

Typeset in X and poF generated bybrFix with conxt macros and
PDFITEX With hyperref.sty in an intel PIl 35&Hz system running
Linux kernel ver. 2.0.36.

The miniature painting on the title page depicts tfapis adoring
Krishna's footprints. JaipuRasapanchadhyageries, c. 1820, 2414
cms, Courtsey: Ashok Kapur collection.

TUGIndia

JOURNAL

Vol.2 No.1

TEX

user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > 2> °

mailto:cvr@vsnl.com
mailto:tpchenai@md2.vsnl.net.in
mailto:tugindia@river-valley.com
http://www.river-valley.com/tug

Apologies for the delayed release of the second volume. TUG-
India suffered paucity of human resources for the right upkeep
of the journal and other intellectual pursuit, which it has been
authorized to do. As you are aware, TW@ia runs on the
mercy of the resources shared by the volunteer members who
have their own preoccupations at their work. However, we
could gather few enterprising members who can spare little
more time and effort for the cause of TUW@ia and as such we
hope, future releases of the journal will not be unduly delayed.
The deviation you'll find in this issue is the key article,
The Cathedral and the Bazadny Eric Raymond, who wrote
the programFetchmail and became one of the most vocal
proponents of open source development. His article compares
proprietary and open development methodologids Cathed-
ral and the Bazaarhas become a manifesto for open source
development, where a mob of programmers with little centrali-
zation yields finished software. Raymond says such a software
is richer and more stable than any commercial software he has
ever used. Though this article may seem irrelevant at least to
some of our readers, | hope the message/philosophy outlined by
Raymond assumes importance in the event of the controversies
on free andnonfreedirectories atTAN, raised by some of the

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

package mainteners who got agitated by the inclusion of their
packages in thaonfreetree.

The other articles arBook Design for gX Users Part 2:
Practice by Philip Taylor, the first part of which appeared in
the first issue of TUGdia Journal and the last one Review
of TUG98by Kaveh Bazargan and Philip Taylor.

Hope that these articles will be of use to the readers. The
PDF generation techniques employed in the current issue is a
mix of conxt for the first two articles andiIgX for the last
one. Readers can have a comparison of the output generated by
both the opposing document formatting technologies ingxe T
world. | earnestly solicit your comments on quality, suggestions
for improvement and all that.

K. S. S. NAMBOORIPAD

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > 2> °

Eric S. Raymond
esr@snark.thyrsus.com

| anatomize a successful free-software projéetchmail that was

run as a deliberate test of some surprising theories about software
engineering suggested by the history of Linux. | discuss these
theories in terms of two fundamentally different development styles,
the “cathedral” model ofsF and its imitators versus the “bazaar”
model of the Linux world. | show that these models derive from
opposing assumptions about the nature of the software-debugging
task. | then make a sustained argument from the Linux experience for
the proposition that “Given enough eyeballs, all bugs are shallow”,
suggest productive analogies with other self-correcting systems of
selfish agents, and conclude with some exploration of the implications
of this insight for the future of softwark.

1You may checkfor the latest version of this articléap:/www.tuxedo.org/ esr/writings/cathedral-bazaar

TUGIndia

JOURNAL

Vol.2 No.1

TEX

USEr
grou

oW’

Title Page

Who's who

Editorial

Book Design for X Users—lII
A Review of TUG98
Quit

< > 2> °

mailto:esr@snark.thyrsus.com
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

Contents

3.1 The Cathedral and the Bazaar

3.2 The Mail Must Get Through

3.3 The Importance of Having Users

3.4 Release Early, Release Often

3.5 When Is A Rose Not A Rose?

3.6 Popclient becomes Fetchmalil

3.7 Fetchmail Grows Up

3.8 A Few More Lessons From Fetchmail
3.9 Necessary Preconditions for the Bazaar Style
3.10 The Social Context of Free Software
3.11 Acknowledgements

3.12 For Further Reading

10
15
17
23
26
31
34
36
40
46
47

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—lII
A Review of TUG98
Quit

< > 2> °

Linux is subversive. Who would have thought even five years
ago that a world-class operating system could coalesce as if by
magic out of part-time hacking by several thousand developers
scattered all over the planet, connected only by the tenuous
strands of the Internet?

Certainly not I. By the time Linux swam onto my radar
screen in early 1993, | had already been involved in Unix and
free-software development for ten years. | was one of the
first GNU contributors in the mid-1980s. | had released a good
deal of free software onto the net, developing or co-developing
several programs (nethack, Emacas and Gub modes, xlife,
and others) that are still in wide use today. | thought | knew
how it was done.

Linux overturned much of what | thought | knew. | had been
preaching the Unix gospel of small tools, rapid prototyping
and evolutionary programming for years. But | also believed
there was a certain critical complexity above which a more
centralized, griori approach was required. | believed that the
most important software (operating systems and really large
tools like Emacs) needed to be built like cathedrals, carefully
crafted by individual wizards or small bands of mages working
in splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development — release early and
often, delegate everything you can, be open to the point of

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

promiscuity — came as a surprise. No quiet, reverent cathedral-
building here —rather, the Linux community seemed to resemble
a great babbling bazaar of differing agendas and approaches
(aptly symbolized by the Linux archive sites, who'd take subm-
issions fromanyoné out of which a coherent and stable system
could seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work
well, came as a distinct shock. As | learned my way around,
| worked hard not just at individual projects, but also at trying
to understand why the Linux world not only didn't fly apart in
confusion but seemed to go from strength to strength at a speed
barely imaginable to cathedral-builders.

By mid-1996 | thought | was beginning to understand. Chance
handed me a perfect way to test my theory, in the form of a
free-software project which | could consciously try to run in
the bazaar style. So | did — and it was a significant success.

In the rest of this article, I'll tell the story of that project,
and I'll use it to propose some aphorisms about effective free-
software development. Not all of these are things | first learned
in the Linux world, but we'll see how the Linux world gives
them particular point. If ’'m correct, they’ll help you understand
exactly what it is that makes the Linux community such a
fountain of good software —and help you become more produc-
tive yourself.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

Since 1993 I'd been running the technical side of a small free-
access ISP called Chester County InterLimci() in West
Chester, Pennsylvania (I co-foundediL and wrote our unique
multiusersBs software — you can check it out by telnetting to
locke.ccil.orgToday it supports almost three thousand users on
nineteen lines.) The job allowed me 24-hour-a-day access to the
net throughcciL’s 56K line — in fact, it practically demanded

it!

Accordingly, | had gotten quite used to instant Internet email.
For complicated reasons, it was hard togeto work between
my home machinespark.thyrsus.com) andcciL. When
| finally succeeded, | found having to periodically telnet to
locke tocheck my mail annoying. What | wanted was for my
mail to be delivered on snark so thaiff(1) would notify
me when it arrived.

Simple sendmail forwarding wouldn’t work, because snark
isn't always on the net and doesn’t have a stati@address.
What | needed was a program that would reach out over my
SLIP connection and pull across my mail to be delivered locally.
| knew such things existed, and that most of them used a simple
application protocol calledop (Post Office Protocol). And
sure enough, there was already@r3server included with
locke’sBsD/osoperating system.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

telnet://locke.ccil.org

| needed aopP3client. So | went out on the net and found
one. Actually, | found three or four. | used pop-perl for a while,
but it was missing what seemed an obvious feature, the ability
to hack the addresses on fetched mail so replies would work
properly.

The problem was this: suppose someone named ‘joe’ on
locke sent me mail. If | fetched the mail &nark and then
tried to reply to it, my mailer would cheerfully try to ship it to
a nonexistent ‘joe’ osnark . Hand-editing reply addresses to
tack on ‘@ccil.org '’ quickly got to be a serious pain.

This was clearly something the computer ought to be doing
forme. (Infact, according tRFCc1123section 5.2.18&endmail
ought to be doing it.) But none of the existingprclients knew
how! And this brings us to the first lesson:

e Every good work of software starts by scratching a develo-
per’s personal itch.

Perhaps this should have been obvious (it's long been proverbial
that “Necessity is the mother of invention”) but too often
software developers spend their days grinding away for pay
at programs they neither need nor love. But not in the Linux
world —which may explain why the average quality of software
originated in the Linux community is so high.

So, did | immediately launch into a furious whirl of coding
up a brand-newop3client to compete with the existing ones?
Not on your life! I looked carefully at theop utilities | had

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

in hand, asking myself “which one is closest to what | want?”.
Because

e Good programmers know what to write. Great ones know
what to rewrite (and reuse).

While | don’t claim to be a great programmer, | try to imitate
one. Animportanttrait of the great ones is constructive laziness.
They know that you get an A not for effort but for results, and
thatit's almost always easier to start from a good partial solution
than from nothing at all.

Linus, for example, didn't actually try to write Linux from
scratch. Instead, he started by reusing code and ideas from
Minix, a tiny Unix-like osfor 386 machines. Eventually all the
Minix code went away or was completely rewritten — but while
it was there, it provided scaffolding for the infant that would
eventually become Linux.

In the same spirit, | went looking for an existirgP utility

that was reasonably well coded, to use as a development base.

The source-sharing tradition of the Unix world has always
been friendly to code reuse (this is why thrU project chose
Unix as a bases, in spite of serious reservations about tee
itself). The Linux world has taken this tradition nearly to its
technological limit; it has terabytes of open sources generally
available. So spending time looking for some else’s almost-
good-enough is more likely to give you good results in the
Linux world than anywhere else.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

And it did for me. With those I'd found earlier, my second
search made up atotal of nine candidatestehpop ,PopTart ,
get-mail , gwpop, pimp, pop-perl , popc, popmail
and upop. The one | first settled on waetchpop by
Seung-Hong Oh. | put my header-rewrite feature in it, and
made various other improvements which the author accepted
into his 1.9 release.

A few weeks later, though, | stumbled across the code for
‘popclient’ by Carl Harris, and found | had a problem. Though
fetchpop had some good original ideas in it (such as its
daemon mode), it could only handlepsand was rather amateu-
rishly coded (Seung-Hong was a bright but inexperienced progra-
mmer, and both traits showed). Carl's code was better, quite
professional and solid, but his program lacked several important
and rather tricky-to-implemeriétchpop features (including
those I'd coded myself).

Stay or switch? If | switched, I'd be throwing away the
coding I'd already done in exchange for a better development
base.

A practical motive to switch was the presence of multiple-
protocol support. POP3is the most commonly used of the
post-office server protocols, but not the only one. Fetchpop
and the other competition didn’'t d@oP2 RPOR or APOP, and
| was already having vague thoughts of perhaps adding
(Internet Message Access Protocol, the most recently designed
and most powerful post-office protocol) just for fun.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

But | had a more theoretical reason to think switching might .
be as good an idea as well, something | learned long before TUGl nd| a
Linux. JOURNAL

e “Planto throw one away; you will, any how.” (Fred Brooks, Vol. 2 No.1

The Mythical Man-MonthChapter 11).

INDIAN

Or, to put it another way, you often don't really understand the TeX
problem until after the first time you implement a solution. The usEerS
second time, maybe you know enough to do it right. So if you group

want to get it right, be ready to start over at least once.
Well (1 told myself) the changes fetchpop had been my

first try. So | switched. Title Page
After | sent my first set of popclient patches to Carl Harris
on 25 June 1996, | found out that he had basically lost interest Who's who
in popclient some time before. The code was a bit dusty, with
minor bugs hanging out. | had many changes to make, and we Editorial
quickly agreed that the logical thing for me to do was take over
the program. The Cathedral and the Bazaar
Without my actually noticing, the project had escalated. No
longer was | just contemplating minor patches to an existing Book Design for EX Users—lI
popclient. | took on maintaining an entire one, and there were
ideas bubbling in my head that | knew would probably lead to A Review of TUG98
major changes.
In a software culture that encourages code-sharing, this is a Quit

natural way for a project to evolve. | was acting out this:
<« < > >3 °

e If you have the right attitude, interesting problems will find
you.

But Carl Harris’s attitude was even more important. He under-
stood that

e When you lose interest in a program, your last duty to it is
to hand it off to a competent successor.

Without ever having to discuss it, Carl and | knew we had a

common goal of having the best solution out there. The only

guestion for either of us was whether | could establish that |

was a safe pair of hands. Once | did that, he acted with grace
and dispatch. | hope | will act as well when it comes my turn.

And so | inherited popclient. Just as importantly, | inherited
popclient’s user base. Users are wonderful things to have, and
not just because they demonstrate that you're serving a need,
that you've done something right. Properly cultivated, they can
become co-developers.

Another strength of the Unix tradition, and again one that
Linux pushes to a happy extreme, is that a lot of users are
hackers too — and because source code is available, they can
be effectivehackers. This can be tremendously useful for

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

shortening debugging time. Given a bit of encouragement, your
users will diagnose problems, suggest fixes, and help improve
the code far more quickly than you could unaided.

e Treating your users as co-developers is your least-hassle
route to rapid code improvement and effective debugging.

The power of this effect is easy to underestimate. In fact,
pretty well all of us in the free-software world drastically
underestimated how well it would scale up with number of
users and against system complexity, until Linus showed us
differently.

In fact, | think Linus’s cleverest and most consequential hack
was not the construction of the Linux kernel itself, but rather his
invention of the Linux development model. When | expressed
this opinion in his presence once, he smiled and quietly repeated
something he has often said: “I'm basically a very lazy person
who likes to get credit for things other people actually do.”
Lazy like a fox. Or, as Robert Heinlein might have said, too
lazy to fail.

In retrospect, one precedent for the methods and success of
Linux can be seen in the development of theu Emacs Lisp
library and Lisp code archives. In contrast to the cathedral-
building style of the Emacs C core and most othgF tools,
the evolution of the Lisp code pool was fluid and very user-
driven. Ideas and prototype modes were often rewritten three

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

or four times before reaching a stable final form. And loosely-
coupled collaborations enabled by the Internet, a la Linux, were
frequent.

Indeed, my own most successful single hack previous to
fetchmail was probably Emae& mode, a Linux-like collabo-
ration by email with three other people, only one of whom
(Richard Stallman) I have met to this day. It was a front-end for
sccs Rcsand latercvs from within Emacs that offered “one-
touch” version control operations. It evolved from a tiny, crude
sccs.el mode somebody else had written. And the development
of vc succeeded because, unlike Emacs itself, Emacs Lisp code
could go through release/test/improve generations very quickly.

(One unexpected side-effect 66Fs policy of trying to
legally bind code into thePL is that it becomes procedurally
harder forFsr to use the bazaar mode, since they believe
they must get a copyright assignment for every individual
contribution of more than twenty lines in order to immunize
GpPLed code from challenge under copyright law. Users of the
BSD andmiT X Consortium licenses don’t have this problem,
since they're not trying to reserve rights that anyone might have
an incentive to challenge.)

Early and frequent releases are a critical part of the Linux
development model. Most developers (including me) used

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

to believe this was bad policy for larger than trivial projects,
because early versions are almost by definition buggy versions
and you don’t want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-
building style of development. If the overriding objective was
for users to see as few bugs as possible, why then you'd only
release one every six months (or less often) and work like
a dog on debugging between releases. The Emacs C core
was developed this way. The Lisp library, in effect, was not
— because there were active Lisp archives outsideriris
control, where you could go to find new and development code
versions independently of Emacs’s release cycle.

The most important of these, the Ohio State elisp archive,
anticipated the spirit and many of the features of today’s big
Linux archives. But few of us really thought very hard about
what we were doing, or about what the very existence of that
archive suggested about problemsFsFs cathedral-building
development model. | made one serious attempt around 1992
to get a lot of the Ohio code formally merged into the official
Emacs Lisp library. | ran into political trouble and was largely
unsuccessful.

But by a year later, as Linux became widely visible, it was
clear that something different and much healthier was going on
there. Linus’s open development policy was the very opposite
of cathedral-building. Theunsite andtsx-11 archives
were burgeoning, multiple distributions were being floated.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

And all of this was driven by an unheard-of frequency of core
system releases.

Linus was treating his users as co-developers in the most
effective possible way:

e Release early. Release often. And listen to your customers.

Linus’s innovation wasn’t so much in doing this (something like
it had been Unix-world tradition for a long time), but in scaling
it up to a level of intensity that matched the complexity of what
he was developing. In those early times it wasn’t unknown
for him to release a new kernel more than onadag And,
because he cultivated his base of co-developers and leveraged
the Internet for collaboration harder than anyone else, it worked.
Buthowdid it work? And was it something | could duplicate,
or did it rely on some unique genius of Linus’s?
| didn’t think so. Granted, Linus is a damn fine hacker
(how many of us could engineer an entire production-quality
operating system kernel?). But Linux didn’t represent any
awesome conceptual leap forward. Linus is not (or at least,
not yet) an innovative genius of design in the way that, say,
Richard Stallman or James Gosling are. Rather, Linus seems to
me to be a genius of engineering, with a sixth sense for avoiding
bugs and development dead-ends and a true knack for finding
the minimum-effort path from point A to point B. Indeed, the
whole design of Linux breathes this quality and mirrors Linus’s
essentially conservative and simplifying design approach.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

So, ifrapid releases and leveraging the Internet medium to the
hilt were not accidents but integral parts of Linus’s engineering-
genius insight into the minimum-effort path, what was he
maximizing? What was he cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping
his hacker/users constantly stimulated and rewarded — stimulated
by the prospect of having an ego-satisfying piece of the action,
rewarded by the sight of constant (ewdgily) improvement in
their work.

Linus was directly aiming to maximize the number of person-
hours thrown at debugging and development, even at the possible
cost of instability in the code and user-base burnout if any
serious bug proved intractable. Linus was behaving as though
he believed something like this:

e Given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the
fix obvious to someone

Or, less formally, “Given enough eyeballs, all bugs are shallow.”
| dub this: “Linus’s Law”.

My original formulation was that every problem “will be
transparent to somebody”. Linus demurred that the person who
understands and fixes the problem is not necessarily or even
usually the person who first characterizes it. “Somebody finds
the problem,” he says, “and somebaggeunderstands it. And

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

I'llgo on record as saying that finding it is the bigger challenge.”
But the point is that both things tend to happen quickly.

Here, | think, is the core difference underlying the cathedral-
builder and bazaar styles. In the cathedral-builder view of
programming, bugs and development problems are tricky, insidi-
ous, deep phenomena. Ittakes months of scrutiny by a dedicated
few to develop confidence that you've winkled them all out.
Thusthe long release intervals, and the inevitable disappointment
when long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs
are generally shallow phenomena — or, at least, that they turn
shallow pretty quick when exposed to a thousand eager co-
developers pounding on every single new release. Accordingly
you release often in order to get more corrections, and as a
beneficial side effect you have less to lose if an occasional
botch gets out the door.

And that’s it. That's enough. If “Linus’s Law” is false, then
any system as complex as the Linux kernel, being hacked over
by as many hands as the Linux kernel, should at some point
have collapsed under the weight of unforseen bad interactions
and undiscovered “deep” bugs. If it’s true, on the other hand, it
is sufficient to explain Linux’s relative lack of bugginess.

And maybe it shouldn’t have been such a surprise, at that.
Sociologists years ago discovered that the averaged opinion
of a mass of equally expert (or equally ignorant) observers
is quite a bit more reliable a predictor than that of a single

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

randomly-chosen one of the observers. They called this the
“Delphi effect”. It appears that what Linus has shown is that
this applies even to debugging an operating system — that the
Delphi effect can tame development complexity even at the
complexity level of aros kernel.

| am indebted taleff Dutky for pointing out that Linus’s
Law can be rephrased as “Debugging is parallelizable”. Jeff
observes that although debugging requires debuggers to com-
municate with some coordinating developer, it doesn’t require
significant coordination between debuggers. Thus it doesn't
fall prey to the same quadratic complexity and management
costs that make adding developers problematic.

In practice, the theoretical loss of efficiency due to duplication
of work by debuggers almost never seems to be an issue in the
Linux world. One effect of a “release early and often policy”
is to minimize such duplication by propagating fed-back fixes
quickly.

Brooks even made an off-hand observation related to Jeff’s:
“The total cost of maintaining a widely used program is typically
40 percent or more of the cost of developing it. Surprisingly
this cost is strongly affected by the number of usétsre users
find more bug$ (my emphasis).

More users find more bugs because adding more users adds
more different ways of stressing the program. This effect
is amplified when the users are co-developers. Each one
approaches the task of bug characterization with a slightly

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

mailto:dutky@wam.umd.edu
mailto:dutky@wam.umd.edu

different perceptual set and analytical toolkit, a different angle
on the problem. The “Delphi effect” seems to work precisely
because of this variation. In the specific context of debugging,
the variation also tends to reduce duplication of effort.

So adding more beta-testers may not reduce the complexity
of the current “deepest” bug from thieveloper'se.o.v, but it
increases the probability that someone’s toolkit will be matched
to the problem in such a way that the bug is shaltowthat
person

Linus coppers his bets, too. In case thare serious bugs,
Linux kernel version are numbered in such a way that potential
users can make a choice either to run the last version designated
“stable” or to ride the cutting edge and risk bugs in order to get
new features. This tactic is not yet formally imitated by most
Linux hackers, but perhaps it should be; the fact that either
choice are available makes both more attractive.

Having studied Linus's behavior and formed a theory about
why it was successful, | made a conscious decision to test
this theory on my new (admittedly much less complex and
ambitious) project.

But the first thing | did was reorganize and simplify popclient
alot. CarlHarris’'simplementation was very sound, but exhibited

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

a kind of unnecessary complexity common to many C program-
mers. He treated the code as central and the data structures as
support for the code. As a result, the code was beautiful but
the data structure design ad-hoc and rather ugly (at least by the
high standards of this oldsp hacker).

| had another purpose for rewriting besides improving the
code and the data structure design, however. That was to evolve
it into something | understood completely. It's no fun to be
responsible for fixing bugs in a program you don't understand.

For the first month or so, then, | was simply following out the
implications of Carl’s basic design. The first serious change |
made was to addvAp support. | did this by reorganizing
the protocol machines into a generic driver and three method
tables (forroP2 POP3 andiMAP). This and the previous changes
illustrate a general principle that's good for programmers to
keep in mind, especially in languages like C that don’t naturally
do dynamic typing:

e Smart data structures and dumb code works a lot better than
the other way around

Fred Brooks, Chapter 11 again: “Show me your code and
conceal your data structures, and | shall continue to be mystified.
Show me your data structures, and | won’t usually need your
code; it'll be obvious.”

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

Actually, he said “flowcharts” and “tables”. But allowing
for thirty years of terminological/cultural shift, it's almost the
same point.

At this point (early September 1996, about six weeks from
zero) | started thinking that a name change might be in order —
after all, it wasn't just eoPclient any more. But | hesitated,

because there was as yet nothing genuinely new in the design.

My version of popclient had yet to develop an identity of its
own.

That changed, radically, when fetchmail learned how to
forward fetched mail to themtP port. I'll get to that in a
moment. But first: | said above that I'd decided to use this
project to test my theory about what Linus Torvalds had done
right. How (you may well ask) did | do that? In these ways:

e |released early and often (almost never less often than every
ten days; during periods of intense development, once a
day).

e | grew my beta list by adding to it everyone who contacted
me about fetchmail.

e | sent chatty announcements to the beta list whenever |
released, encouraging people to participate.

e And | listened to my beta testers, polling them about design
decisions and stroking them whenever they sent in patches
and feedback.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

The payoff from these simple measures was immediate. From
the beginning of the project, | got bug reports of a quality most
developers would kill for, often with good fixes attached. |
got thoughtful criticism, | got fan mail, | got intelligent feature
suggestions. Which leads to:

e Ifyoutreatyour beta-testers as if they're your most valuable
resource, they will respond by becoming your most valuable
resource

One interesting measure of fetchmail’s success is the sheer size
of the project beta list, fetchmail-friends. At time of writing it
has 249 members and is adding two or three a week.

Actually, as | revise in late May 1997 the list is beginning
to lose members for an interesting reason. Several people have
asked me to unsubscribe them becdasshmail is working
so well for them that they no longer need to see the list traffic!
Perhaps this is part of the normal life-cycle of a mature bazaar-
style project.

The real turning pointin the project was when Harry Hochheiser
sent me his scratch code for forwarding mail to the client
machine’ssmTp port. | realized almost immediately that a

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

reliable implementation of this feature would make all the other
delivery modes next to obsolete.

For many weeks | had been tweakifegchmail rather
incrementally while feeling like the interface design was service-
able but grubby — inelegant and with too many exiguous options
hanging out all over. The options to dump fetched mail to a
mailbox file or standard output particularly bothered me, but |
couldn’t figure out why.

What | saw when | thought aboamTp forwarding was that
popclient had been trying to do too many things. It had been
designed to be both a mail transport agemtA) and a local
delivery agentiiDA). With smTpforwarding, it could get out of
theMDA business and be a puvgA, handing off mail to other
programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail
delivery agent or setting up lock-and-append on a mailbox when
port 25 is almost guaranteed to be there on any platform with
TCP/IP support in the first place? Especially when this means
retrieved mail is guaranteed to look like normal sender-initiated
smTP mail, which is really what we want anyway.

There are several lessons here. First, $Mspr-forwarding
idea was the biggest single payoff | got from consciously trying
to emulate Linus’s methods. A user gave me this terrific idea —
all | had to do was understand the implications.

TUGIndia

JOURNAL

Vol.2 No.1

TEX

user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

e The next best thing to having good ide as is recognizing
good ideas from your users. Sometimes the latter is better.

Interestingly enough, you will quickly find that if you are
completely and self-deprecatingly truthful about how much
you owe other people, the world at large will treat you like
you did every bit of the invention yourself and are just being
becomingly modest about your innate genius. We can all see
how well this worked for Linus!

And after a very few weeks of running the project in the same
spirit, | began to get similar praise not just from my users but
from other people to whom the word leaked out. | stashed away
some of that email; I'll look at it again sometime if | ever start
wondering whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons
here that are general to all kinds of design.

e Often, the most striking and innovative solutions come from
realizing that your concept of the problem was wrong

| had been trying to solve the wrong problem by continuing
to develop popclient as a combinetda/MbA with all kinds
of funky local delivery modes. Fetchmail's design needed to
be rethought from the ground up as a pure., a part of the
normalsMTpP-speaking Internet mail path.

When you hit a wall in development —when you find yourself
hard put to think past the next patch — it's often time to ask not

TUGIndia

JOURNAL

Vol.2 No.1

TEX

user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

whether you've got the right answer, but whether you're asking
the right question. Perhaps the problem needs to be reframed.

Well, | had reframed my problem. Clearly, the right thing
to do was (1) haclsmTp forwarding support into the generic
driver, (2) make it the default mode, and (3) eventually throw
out all the other delivery modes, especially the deliver-to-file
and deliver-to-standard-output options.

| hesitated over step 3 for some time, fearing to upset long-
time popclient users dependent on the alternate delivery mecha-
nisms. In theory, they could immediately switchfimrward
files or their non-sendmail equivalents to get the same effects.
In practice the transition might have been messy.

But when | did it, the benefits proved huge. The cruftiest
parts of the driver code vanished. Configuration got radically
simpler — no more grovelling around for the systema and
user’'s mailbox, no more worries about whether the underlying
ossupports file locking.

Also, the only way to lose mail vanished. If you specified
delivery to a file and the disk got full, your mail got lost. This
can’t happen witlsmTPforwarding because yowmTrlistener
won't returnok unless the message can be delivered or at least
spooled for later delivery.

Also, performance improved (though not so you'd notice it
in a single run). Another not insignificant benefit of this change
was that the manual page got a lot simpler.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

Later, | had to bring delivery via a user-specified loal
back in order to allow handling of some obscure situations
involving dynamicsLip. But | found a much simpler way to do
it.

The moral? Don't hesitate to throw away superannuated
features when you can do it without loss of effectiveness.
Antoine de Saint-Exupery (who was an aviator and aircraft
designer when he wasn'’t being the author of classic children’s
books) said:

e “Perfection (in design) is achieved not when there is nothing
more to add, but rather when there is nothing more to take
away”

When your code is getting both better and simpler, that is when
you knowit’s right. And in the process, the fetchmail design
acquired an identity of its own, different from the ancestral
popclient.

It was time for the name change. The new design looked
much more like a dual oendmail than the old popclient
had; both areuTas, but where sendmail pushes then delivers,
the new popclient pulls then delivers. So, two months off the
blocks, | renamed itetchmail

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

There | was with a neat and innovative design, code that | knew
worked well because | used it every day, and a burgeoning beta
list. It gradually dawned on me that | was no longer engaged
in a trivial personal hack that might happen to be useful to few
other people. | had my hands on a program every hacker with
a Unix box and aLIp/PPPMail connection really needs.

With the smTP forwarding feature, it pulled far enough in
front of the competition to potentially become a “category
killer", one of those classic programs that fills its niche so
competently that the alternatives are not just discarded but
almost forgotten.

| think you can't really aim or plan for a result like this.
You have to get pulled into it by design ideas so powerful
that afterward the results just seem inevitable, natural, even
foreordained. The only way to try for ideas like that is by
having lots of ideas — or by having the engineering judgment
to take other peoples’ good ideas beyond where the originators
thought they could go.

Andrew Tanenbaum had the original idea to build a simple
native Unix for the 386, for use as a teaching tool. Linus
Torvalds pushed the Minix concept further than Andrew probably
thought it could go — and it grew into something wonderful. In
the same way (though on a smaller scale), | took some ideas
by Carl Harris and Harry Hochheiser and pushed them hard.

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page

Who's who

Editorial

The Cathedral and the Bazaar

Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

Neither of us was ‘original’ in the romantic way people think
is genius. But then, most science and engineering and software
development isn’'t done by original genius, hacker mythology
to the contrary.

The results were pretty heady stuff all the same — in fact,
just the kind of success every hacker lives for! And they
meant | would have to set my standards even higher. To make
fetchmail as good as | now saw it could be, I'd have to
write not just for my own needs, but also include and support
features necessary to others but outside my orbit. And do that
while keeping the program simple and robust.

The first and overwhelmingly most important feature | wrote
after realizing this was multidrop support — the ability to fetch
mail from mailboxes that had accumulated all mail for a group
of users, and then route each piece of mail to its individual
recipients.

| decided to add the multidrop support partly because some
users were clamoring for it, but mostly because | thought it
would shake bugs out of the single-drop code by forcing me
to deal with addressing in full generality. And so it proved.
GettingRFc822parsing right took me a remarkably long time,
not because any individual piece of it is hard but because it
involved a pile of interdependent and fussy details.

But multidrop addressing turned out to be an excellent design
decision as well. Here’s how | knew:

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

e Any tool should be useful in the expected way, bujreat
tool lends itself to uses you never expected.

The unexpected use for multi-drop fetchmail is to run mailing
lists with the list kept, and alias expansion done, on the client
side of thesLIP/PPPCONNection. This means someone running a
personal machine through &Paccount can manage a mailing
list without continuing access to th&P's alias files.

Another important change demanded by my beta testers was
support for 8-bitMIME operation. This was pretty easy to do,
because | had been careful to keep the code 8-bit clean. Not
because | anticipated the demand for this feature, but rather in
obedience to another rule:

¢ When writing gateway software of any kind, take pains to
disturb the data stream as little as possible — aader
throw away information unless the recipient forces you to!

Had | not obeyed this rule, 8-bitiME support would have been
difficult and buggy. As it was, all | had to do is readc 1652
and add a trivial bit of header-generation logic.

Some European users bugged me into adding an option to
limit the number of messages retrieved per session (so they can
control costs from their expensive phone networks). | resisted
this for a long time, and I'm still not entirely happy about it.
But if you're writing for the world, you have to listen to your

TUGIndia

JOURNAL

Vol.2 No.1

INDIAN

TEX
user
grou

©wm

Title Page
Who's who
Editorial

The Cathedral and the Bazaar
Book Design for X Users—II
A Review of TUG98
Quit

< > >3)

customers — this doesn’t change just because they’re not paying
you in money.

Before we go back to general software-engineering issues,
there are a couple more specific lessons fronfetEhmail
experience to ponder.

Therc file syntax includes optional ‘noise’ keywords that
are entirely ignored by the parser. The English-like syntax they
allow is considerably more readable than the traditional terse
keyword-value pairs you get when you strip them all out.

These started out as a late-night experiment when | noticed
how much thec file declarations were beginning to resemble
an imperative minilanguage. (This is also why | changed the
original popclient ‘server’ keyword to ‘pol