Package ‘wpeR’

July 14, 2025
Type Package
Title Streamlined Analysis of Wild Pedigree Data
Version 0.1.0

Description Analyzing pedigree data of wild
populations. While primarily designed to process outputs from the
'COLONY" (Jones & Wang (2010) <doi:10.1111/j.1755-0998.2009.02787.x>)
pedigree reconstruction software, it can also accommodate
data from other sources. By linking reconstructed pedigrees with
genetic sample metadata, 'wpeR' produces spatial and temporal
visualizations as well as tabular summaries that support
interpretation of family structures and dynamics. The main goal of the
package is to provide a solution for the analysis of
complex wild pedigree data and to help the user to gain insights
into genetic relationships within wild animal populations.

License GPL (>=3)
URL https://gr3602.github.io/wpeR/

BugReports https://github.com/GR3602/wpeR/issues
Depends R (>=4.1.0)
Imports dplyr, ggplot2, sf, stats, utils

Suggests basemaps, ggforce, ggrepel, gridExtra, kinship2, knitr,
leaflet, leaflet.providers, rmarkdown, spelling, testthat (>=
3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no

Author Tomaz Skrbinsek [aut],
Gregor Simcic [aut, cre]

https://doi.org/10.1111/j.1755-0998.2009.02787.x
https://gr3602.github.io/wpeR/
https://github.com/GR3602/wpeR/issues

2 anim_timespan

Maintainer Gregor Simcic <gregadsimcic@gmail.com>
Repository CRAN
Date/Publication 2025-07-14 17:00:02 UTC

Contents
anim_timespant e e e e e e e e e e e e e e 2
check_sampledata 3
dyn_matriX e 4
get_colony e 6
get_ped ... e e 7
NDEW_SEASONS v v o o e e e e e e e e 8
org_fams L e 10
ped_satploto e e e e e 12
ped_spatial 13
plot_table L e 16
wolf_samples e 18

Index 19

anim_timespan Get dates of individuals first and last sample
Description

Takes data frame of all samples and returns the dates of individuals first and last sample. Besides
that the functions determines if animal is dead based on predefined sample type eg. tissue.

Usage

anim_timespan(individual_id, sample_date, sample_type, dead = "Tissue")

Arguments

individual_id Column in the dataframe of all samples containing individual animal identifier
code. Defined as dataframe$column.

sample_date Column in the dataframe of all samples containing the date of sample collection.
Must be in Date format. Defined as dataframe$column.

sample_type Column in the dataframe of all samples containing the data on the type (eg. scat,
tissue, saliva) of particular sample. Defined as dataframe$column.

dead Single value or vector of different lethal sample types. If no lethal samples
are included in the sampledata the dead parameter can be set to FALSE (dead =
FALSE). Defaults to "Tissue".

check_sampledata

Value

A data frame with four columns and one row for each individual_id. Returned data frame
columns correspond to individual identification key (ID), date of first (FirstSeen) and last (LastSeen)
sample of individual and logical (TRUE/FALSE) value that identifies if the individual is dead (IsDead).

Examples

anim_timespan(
individual_id
sample_date =
sample_type =

= wolf_samples$AnimalRef,
wolf_samples$Date,
wolf_samples$SType,

dead = c("Tissue")

check_sampledata

Check and prepare genetic sample metadata

Description

Verifies the consistency of columns in the genetic sample metadata and prepares it for use with other
functions in the wpeR package. The function ensures that the provided data is properly formatted
and conforms to the standards of functions that make up the wpeR package.

Usage

check_sampledata(

Sample,
Date,
AnimalRef,
GeneticSex,
lat,

1ng,

SType,
extraCols =

Arguments

Sample
Date
AnimalRef

GeneticSex

lat

NULL

A vector of sample unique identifier codes.
A vector of sample collection dates in *YYY Y-MM-DD’ format.

A vector of identifier codes of the particular individual that the sample belongs
to.

A vector of genetic sex information ('F’ for female, "M’ for male, NA for un-
known).

A vector of latitude coordinates in the WGS84 coordinate system (EPSG: 4326).

4 dyn_matrix

Ing A vector of longitude coordinates in the WGS84 coordinate system (EPSG:
4326).

SType A vector of sample types eg.: scat, hair, tissue.

extraCols A vector of extra column names that the user wants to include in sampledata

data frame (see Details).

Details

By specifying the extraCols parameter additional information can be included in the sampledata
dataframe. Such additional information is not required for the functioning of the wpeR package func-
tions, but can be useful to the user when interpreting results. When including additional columns
the function inputs (Sample, Date, AnimalRef...) have to be defined as a vector extracted from data
frame column (eg. Sample = dataframe$column) and the extraCols parameter is defined, as a vec-
tor of column names form the same data frame (eg. extraCols = c¢(columnl, column2, column3)).

Value

A data frame with at least 7 columns and a number of rows equal to the length of the input vector.
Each column corresponds to one of the input parameters. If the function executes without warn-
ings or errors, the result from check_sampledata() can be used as an input parameter for other
functions within this package: get_colony(), get_ped(), org_fams() and plot_table().

Examples

sampledata <- check_sampledata(
Sample = wolf_samples$Sample,
Date = wolf_samples$Date,
AnimalRef = wolf_samples$AnimalRef,
GeneticSex = wolf_samples$GeneticSex,
lat = wolf_samples$lat,
lng = wolf_samples$lng,
SType = wolf_samples$SType

dyn_matrix Get matrix of apparent survival

Description

Creates a matrix that shows number of captured animals between multiple seasons.

Usage

dyn_matrix(animal_id, capture_date, start_dates, end_dates)

dyn_matrix

Arguments

animal_id

capture_date

start_dates

end_dates

Value

A column in the dataframe of all samples that stores individual animal identifier
code.

A column in the dataframe of all samples that stores the date of sample collec-
tion. Must be in Date format.

Vector of dates in Date format that define the start of each season.

Vector of dates in Date format that define the end of each season.

A matrix with 1 + no. seasons rows and columns.

* diagonal: number of new captures in each session,

* above diagonal: number of recaptures from season x to season Yy,

* below diagonal: number of animals from season y that skipped season x.

Season x is defined in first row, season y in first column. Column Tot. Capts gives all detected
individuals in season y. Row Tot. Skipped gives all individuals skipped in season x but detected

later.

Examples

Define start and end dates for sampling seasons.
seasons <- data.frame(

start = c(
as.Date("2017
as.Date("2018
as.Date("2019

),

end = c(

-01-01"),
-01-01"),
-01-01")

as.Date("2017-12-31"),
as.Date("2018-12-31"),
as.Date("2019-12-31")

)
)

Create a dynamics matrix for animal captures.

dyn_matrix(

animal_id = wolf_samples$AnimalRef,
capture_date = wolf_samples$Date,
start_dates = seasons$start,
end_dates = seasons$end

get_colony

get_colony Organizes COLONY output

Description

Extends BestConfig_Ordered output from COLONY pedigree reconstruction software with addi-
tional data about individuals included in pedigree. The function adds missing parents to Of fspringID,
assigns sex to each individual included in Of fspringID and adds the computed probabilities of pa-
ternity and maternity assignments (probability of assignments is visible only if the out parameter
is set to "table"). The function also prepares data so that the output of the function can be directly
analyzed with kinship2, pedtools or FamAgg packages.

Usage

get_colony(
colony_project_path,
sampledata,
rm_obsolete_parents = TRUE,
out = "FamAgg"

)

Arguments

colony_project_path

Character string. Path to the folder where COLONY output files are saved. Has
to include file path and project name (see Details).

sampledata Data frame. Metadata for all genetic samples that belong to the individuals
included in pedigree reconstruction analysis. This data frame should adhere to
the formatting and naming conventions outlined in the check_sampledata()
documentation.

rm_obsolete_parents

Logical. Should unknown parents be removed from output. Applies just to
offspring for which both parents are unknown. Defaults to TRUE.

out Character string. For use with which package should the output be formatted?
kinship2 (out = "kinship2"), pedtools (out = "pedtools"), FamAgg (out = "Fam-
Agg") or the created data.frame can be outputted as is (out = "table"). Defaults
to "FamAgg"

Details

COLONY output tables needed for this function (.BestConfig_Ordered, .Maternity and .Paternity)

are read directly from the colony output folder and do not need to be imported into R session. The

path to the outputs is defined with colony_project_path parameter. When defining colony_project_path
the user needs to define a complete path to the directory where colony outputs are stored and also

the file name (file name of COLONY outputs equals the project name

eg. /path/to/the/COLONY/output/folder/COLONY _project_name).

https://www.zsl.org/about-zsl/resources/software/colony
https://cran.r-project.org/package=kinship2
https://cran.r-project.org/package=pedtools
https://bioconductor.org/packages/FamAgg/

get_ped 7

Value

A data frame describing a common pedigree structure. Each individual included in pedigree repre-
sents one row. Columns describe individual identifier code, identifier code for mother and father,
sex and family of individual. Column names and arrangement depends on selected output (out
parameter).

Examples

Define the path to COLONY output
path <- paste@(system.file("extdata”, package = "wpeR"), "/wpeR_samplePed")

Get pedigree data in FamAgg format
get_colony(
colony_project_path = path,
sampledata = wolf_samples

)

get_ped Organizes pedigree data

Description

Offers an alternative to get_colony() function in cases where the pedigree was not reconstructed
with COLONY software. It takes a pedigree dataframe and assigns sex to each individual. The func-
tion also prepares data so that the output of the function can be directly analyzed with kinship2,
pedtools or FamAgg packages.

Usage

get_ped(ped, sampledata, out = "FamAgg")

Arguments

ped Data frame. Pedigree data frame with the most basic structure. Three columns
corresponding to offspring, father and mother (see Details). Unknown parents
should be represented by NA values.

sampledata Data frame. Metadata for all genetic samples that belong to the individuals
included in pedigree reconstruction analysis. This data frame should adhere to
the formatting and naming conventions outlined in the check_sampledata()
documentation.

out Character string. For use with which package should the output be formatted?

kinship2 (out = "kinship2"), pedtools (out = "pedtools") or FamAgg (out =
"FamAgg") or the created data.frame can be outputted as is (out = "table"). De-
faults to "FamAgg"

https://www.zsl.org/about-zsl/resources/software/colony
https://cran.r-project.org/package=kinship2
https://cran.r-project.org/package=pedtools
https://bioconductor.org/packages/FamAgg/

8 nbtw_seasons

Details

The custom pedigree specified through the ped parameter should mirror the structure of a COLONY
pedigree and share the same column names. It should consist of three columns for each offspring:
OffspringID, FatherID, MotherID. When considering unknown parents they should be repre-
sented by NA values.

Value

A data frame describing a common pedigree structure. Each individual included in pedigree rep-
resents one row. Columns describe individual identifier code, identifier code for mother and father
and sex of individual. Column names and arrangement depends on selected output (out parameter).

Examples

#texample pedigree dataframe
ped <- data.frame(
OffspringID = c(
"M273P", "M20AM", "M2757", "M2ALK", "M2ETE", "M2EUJ", "MSVQOE",
"MSVQ18", "MSVQ5L", "MSVOM6", "MSVQT4", "MSVQT7", "MSVQTJ", "MSVeuL"
),
FatherID = c(
NA, NA, "M20AM", "M20AM" 6 "M2QAM", "M2QAM", "M20AM",
"M20AM", "M20AM", "M20AM", "M2QAM", "M2QAM", "M2QAM", "M20AM"

)?
MotherID = c(
NA, NA, "M273P", "M273P", "M273P", "M273P", "M273P",
"M273P", "M273P", "M273P", "M273P", "M273P", "M273P", "M273P"

)
)
#Get pedigree data in FamAgg format
get_ped(
ped = ped,
sampledata = wolf_samples
)
nbtw_seasons Number of detected animals between two sampling seasons
Description

Gives an numeric overview of individuals captured within the second sampling season compared
tho the first one.

Usage

nbtw_seasons(
animal_id,
capture_date,

nbtw_seasons 9

seasonl_start,
seasonl_end,
season2_start,
season2_end

Arguments

animal_id A column in the dataframe of all samples that stores individual animal identifier
code.

capture_date A column in the dataframe of all samples that stores the date of sample collec-
tion. Must be in Date format.

seasonl_start String in Date format. Start of fist capture season. Start and end date are in-
cluded in the capture season.

seasonl_end String in Date format. End of fist capture season. Start and end date are included
in the capture season.

season2_start String in Date format. Start of second capture season. Start and end date are
included in the capture season.

season2_end String in Date format. End of second capture season. Start and end date are
included in the capture season.

Value

A data frame with one row and six columns corresponding to season 1 and 2 start and end dates,

number of detected animals in season 2 (total_cap), number of new detentions in season 2 (new_captures),
umber of animals from season 1 detected within season 2 (recaptured) and number of individuals

skipped in season 2 but detected after the end of that season (skipped).

Examples

Calculate the number of animals detected between two sampling seasons.
nbtw_seasons(

animal_id = wolf_samples$AnimalRef,

capture_date = wolf_samples$Date,

seasonl_start = as.Date("2017-01-01"),

seasonl_end = as.Date("2017-12-31"),

season2_start = as.Date(”2018-01-01"),

season2_end = as.Date("2018-12-31")

10 org_fams

org_fams Organize animals into families and expand pedigree data

Description

Takes pedigree data from get_colony() or get_ped() function and groups animals into families.
It also expands the pedigree data by adding information about the family that each individual was
born in and the family in which the individual is the reproductive animal.

Usage

org_fams(ped, sampledata, output = "both")

Arguments
ped Data frame. FamAgg output of get_colony() or get_ped() function. With
rm_obsolete_parents parameter set to TRUE.
sampledata Data frame. Metadata for all genetic samples that belong to the individuals
included in pedigree reconstruction analysis. This data frame should adhere to
the formatting and naming conventions outlined in the check_sampledata()
documentation.
output Character string. Determines the format of the output. Options are: "ped":
returns an extended pedigree data frame. "fams": returns a table of all families
present in the pedigree. "both": returns a list with two data frames: "ped" and
"fams". (Default)
Details

The result of org_fams() function introduces us to two important concepts within the context of
this package: family and half-sib group. A family in the output of this function is defined as a
group of animals where at least one parent and at least one offspring is known. A half-sib group
refers to a group of half-siblings, either maternally or paternally related. In the function output the
DadHSgroup groups paternal half-siblings and MomHSgroup maternal half-siblings.

The fams output dataframe contains famStart and famEnd columns, which estimate a time window
for the family based solely on sample collection dates provided in sampledata. famStart marks
the date of the earliest sample collected from any offspring belonging to that family. famEnd indi-
cates the date of the latest sample collected from either the mother or the father of that family. It
is important to recognize that this method relies on observation (sampling) times. Consequently,
famend (last parental sample date) can precede famStart (first offspring sample date), creating a
biologically impossible sequence and a negative calculated family timespan. Users should interpret
the interval between famStart and famEnd with this understanding.

Value

Depending on the output parameter, the function returns either a data frame (ped or fams) or a list
containing both data frames (ped and fams).

org_fams 11

* ped data frame. An extended version of the pedigree data from get_colony()/get_ped().
In addition to common pedigree information (individual, mother, father, sex, family), ped
includes columns for:

— parents: Identifier codes of both parents separated with _.

— FamID: Numeric identifier for the family to which the individual belongs (see fams be-
low).

— FirstSeen: Date of first sample of individual.

— LastSeen: Date of last sample of individual.

— IsDead: Logical value (TRUE/FALSE) that identifies if the individual is dead.

— DadHSgroup: Identifier of paternal half-sib group (see Details).

— MomHSgroup: Identifier of maternal half-sib group (see Details).

— hsGroup: Numeric value indicating if the individual is part of a half-sib group (see De-
tails).

» fams data frame includes information on families that individuals in the pedigree belong to.
The families are described by:

— parents: Identifier codes of both parents separated with _.

— father: Identifier code of the father.

— mother: Identifier code of the mother.

— FamID: Numeric identifier for the family.

— famStart: Date when the first sample of one of the offspring from this family was col-
lected (see Details).

— famEnd: Date when the last sample of mother or father of this family was collected (see
Details).

— FamDead: Logical value (TRUE/FALSE) indicating if the family no longer exists.

— DadHSgroup: Identifier connecting families that share the same father.

— MomHSgroup: Identifier connecting families that share the same mother.

— hsGroup: Numeric value connecting families that share one of the parents.

Examples

Prepare the data for usage with org_fams() function.
Get animal timespan data using the anim_timespan() function.
animal_ts <- anim_timespan(
wolf_samples$AnimalRef,
wolf_samples$Date,
wolf_samples$SType,
dead = c("Tissue")
)
Add animal timespan to the sampledata
sampledata <- merge(wolf_samples, animal_ts, by.x = "AnimalRef”, by.y = "ID", all.x = TRUE)
Define the path to the pedigree data file.
path <- paste@(system.file("extdata”, package = "wpeR"), "/wpeR_samplePed")
Retrieve the pedigree data from the get_colony function.
ped_colony <- get_colony(path, sampledata, rm_obsolete_parents = TRUE, out = "FamAgg")

Run the function
Organize families and expand pedigree data using the org_fams function.

12

org_fams(

ped = ped_colony,
sampledata = sampledata

)

ped_satplot

ped_satplot

Temporal plot of pedigree

Description

Creates "capture" history plot of individuals arranged by families included in data frame created by
plot_table() function.

Usage

ped_satplot(
plottable,
famSpacing =
hsGroupSpaci
xWhiteSpace
xlabel = "Da
ylabel = "An
title = "",
subtitle ="
LegendLabe
xlegend
ylegend
text_size
fam_label_si

1
0.
0.

Arguments

plottable
famSpacing
hsGroupSpacing
xWhiteSpace
xlabel

ylabel

title

subtitle
LegendLabel
xlegend

2,

ng = 2,
= 100,
te”,
imal”,
= "Sex",
2,

94,

2.5,

ze = 2

Data frame. Output of plot_table() function.

Y-axis spacing between families. Should be even number!
Y-axis spacing between half-sib groups. Should be even number!
Spacing on the X-axis at the beginning and end of the plot.
X-axis label.

Y-axis label.

Plot title.

Plot subtitle.

Title of the legend.

Horizontal position of the legend.

ped_spatial 13

ylegend Vertical position of the legend.
text_size Plot text size.

fam_label_size Family label text size.

Value

A graphical representation of detected family members trough time.

Examples

Prepare the data for usage with plot_table() function.
Get animal timespan data using the anim_timespan() function.
animal_ts <- anim_timespan(wolf_samples$AnimalRef,
wolf_samples$Date,
wolf_samples$SType,
dead = c("Tissue")
)
Add animal timespan to the sampledata
sampledata <- merge(wolf_samples, animal_ts, by.x = "AnimalRef”, by.y = "ID", all.x = TRUE)
Define the path to the pedigree data file.
path <- paste@(system.file("extdata”, package = "wpeR"), "/wpeR_samplePed")
Retrieve the pedigree data from the get_colony function.
ped_colony <- get_colony(path, sampledata, rm_obsolete_parents = TRUE, out = "FamAgg")
Organize families and expand pedigree data using the org_fams function.
org_tables <- org_fams(ped_colony, sampledata, output = "both")
Prepare data for plotting.
pt <- plot_table(plot_fams = 1,
org_tables$fams,
org_tables$ped,
sampledata,
deadSample = c("Tissue")

Run the function.
Get a temporal pedigree plot.
ped_satplot(plottable = pt)

ped_spatial Get files for spatial representation of pedigree

Description

Creates georeferenced data for spatial pedigree representation form the output of plot_table()
function.

14

Usage

ped_spatial

ped_spatial(
plottable,

na

.rm = TRUE,

output = "list",
fullsibdata = NULL,
sibthreshold = 0,

nn

path = ,

filename = ,

out.format = "geopackage",

time.limits = c(as.Date("1900-01-01"), as.Date("2100-01-01")),
time.limit.rep = FALSE,

time.limit.offspring = FALSE,

time.limit.moves = FALSE

nn

)
Arguments
plottable Data frame. Output of plot_table() function.
na.rm Logical (TRUE/FALSE). Remove samples with missing coordinates and/or dates.
output Character vector specifying the desired output type (’list’ - default or ’gis’).

Available outputs: list: all spatial data returned as list, gis: all spatial data re-
turned as georeferenced files.

fullsibdata Data frame with COLONY full-sibling data.

sibthreshold Numeric. P-value threshold for sibship assignment.

path System path for storing georeferenced files.

filename Common name for all georeferenced files.

out.format Character string. Type of georeferenced files to be generated. Can be ether
"geopackage” or "shapefile”. Default is "geopackage”

time.limits Vector of two Date values as the time window.

time.limit.rep Logical (TRUE/FALSE). Apply time limits to reference samples of reproductive

time

time

Details

animals.
.limit.offspring

Logical (TRUE/FALSE). Apply time limits to reference samples of offspring.
.limit.moves

Logical (TRUE/FALSE). Apply time limits to movement data.

The parameters path, filename and out.format, are used only when output parameter is set to

"

gis", since they control which georeferenced files should be created, where they will be saved and

which common file name will they have.

ped_spatial 15

Value

Depending on the output parameter the function can return a list of sf objects, a georeferenced
vector data files or both.

Most of the objects are created separately for mothers, fathers and offspring, this include:

* Reference Points (motherRpoints, fatherRpoints, and of fspringRpoints).

— Each point corresponds to an animal included in the "plot_table()’ function output.

— For reproductive animals (mothers and fathers), a reference point is the location of their
last sample within the specified time window.

— For offspring, the reference point is the location of their first sample within the time
window.

¢ Movement Points (notherMovePoints, fatherMovePoints, and of fspringMovePoints).
— These points represent all the samples of the respective animals.
¢ Movement Lines (motherMovelLines, fatherMovelLines and of fspringMovelines).
— Movement lines connect all ’...MovePoints’ of a specific animal in chronological order.
* Movement Polygons (motherMovePolygons, fatherMovePolygons and of fspringMovePolygons):

— Movement polygons represent a convex hull that encloses all the samples of an individual.
— An individual must have more than two samples for this representation.

Besides that the function also produces lines that connect mothers and their offspring (maternitylLines),
fathers and their offspring (paternitylLines), and if fullsibdata parameter is specified, full sib-
lings (FullsibLines).

Examples

Prepare the data for usage with ped_spatial() function.
Get animal timespan data using the anim_timespan() function.
animal_ts <- anim_timespan(wolf_samples$AnimalRef,
wolf_samples$Date,
wolf_samples$SType,
dead = c("Tissue")
)
Add animal timespan to the sampledata
sampledata <- merge(wolf_samples, animal_ts, by.x = "AnimalRef"”, by.y = "ID"”, all.x = TRUE)
Define the path to the pedigree data file.
path <- paste@(system.file("extdata”, package = "wpeR"), "/wpeR_samplePed")
Retrieve the pedigree data from the get_colony function.
ped_colony <- get_colony(path, sampledata, rm_obsolete_parents = TRUE, out = "FamAgg")
Organize families and expand pedigree data using the org_fams function.
org_tables <- org_fams(ped_colony, sampledata, output = "both")
Prepare data for plotting.
pt <- plot_table(plot_fams =1,
org_tables$fams,
org_tables$ped,
sampledata,
deadSample = c("Tissue")

)

16 plot_table

Run the function
Get files for spatial pedigree representation in list format.
ped_spatial(plottable = pt)

plot_table Prepares pedigree data for plotting and spatial representation

Description
Combines extended pedigree (obtained by org_fams() function) and sample metadata data for
visual (ped_satplot()) and spatial (ped_spatial()) representation of the pedigree.

Usage

plot_table(
plot_fams = "all”,

all_fams,
ped,
sampledata,
datacolumns = c("Sample”, "AnimalRef”, "GeneticSex", "Date”, "SType", "lat"”, "lng",
"FirstSeen", "LastSeen"”, "IsDead"),
deadSample = c("Tissue")
)
Arguments

plot_fams Character string or numeric vector. FamID numbers from fams data generated
by org_fams() function. If all families want to be plotted it is defined as char-
acter string "all". For a subset of families a numeric vector of FamIDs has to be
specified. Defaults to "all".

all_fams Data frame. Family (fams) data generated by org_fams() function.

ped Data frame. Organized pedigree (ped) generated by org_fams() function.

sampledata Data frame. Metadata for all genetic samples that belong to the individuals
included in pedigree reconstruction analysis. For description of sampledata
structure and sample information needed for plot_table() see Details.

datacolumns Vector of column names included sampledata that are needed to produce this
functions output (see Details).

deadSample Single value or vector of different lethal sample types. Defaults to c("Tissue").

Details

e sampledata has to include columns that contain information on:

— unique identifier of each sample; character or numeric (default column name = Sample,
see check_sampledata() function),

plot_table 17

— date of sample collection in Date format (default = Date),

— assignment of sample to particular individual; character or numeric (default = AnimalRef,
see check_sampledata() function),

— sex of the animal coded as F, M or NA; character (default = GeneticSex, see check_sampledata()
function),

— longitude and latitude coordinates of sample collection location; numeric (default = 1ng
and lat, see check_sampledata() function),

— type of particular sample eg. scat, tissue, saliva; character (default = SType, see check_sampledata()
function),

— date of first and last sample of individual in Date format (default = FirstSeen and
LastSeen, see anim_timespan() function),

— value identifying if if the individual is dead; logical (default = IsDead, see anim_timespan()
function).

Value

Extended sampledata data frame that includes all columns defined in datacolumns parameter and
adds information needed for visual and spatial representation of pedigree:

* plottingID: Numeric. Identifier number for temporal pedigree plot ped_satplot(). In case
of polygamous animals same individual can be included in more than one family.

* FamID: Numeric. Identifier number of family that individual belongs to.
* hsGroup: Numeric. Identifier number for the half-sib group of individual.

* rep: Logical. Is individual reproductive in current family, (current family defined with FamID
for a particular entry).

* later_rep: Logical. Is individual reproductive in any other (later) families.

* isPolygamous: Logical. Does the individual have more than one mate.

* dead: Logical. Is individual dead.

* first_sample: Logical. Is this particular sample the first sample of the individual.
* last_sample: Logical. Is this particular sample the last sample of the individual.

* isReference: Logical. Is this particular sample reference sample of individual.

Examples

Prepare the data for usage with plot_table() function.
Get animal timespan data using the anim_timespan() function.
animal_ts <- anim_timespan(wolf_samples$AnimalRef,
wolf_samples$Date,
wolf_samples$SType,
dead = c("Tissue")
)
Add animal timespan to the sampledata
sampledata <- merge(wolf_samples, animal_ts, by.x = "AnimalRef”, by.y = "ID", all.x = TRUE)
Define the path to the pedigree data file.
path <- paste@(system.file("extdata”, package = "wpeR"), "/wpeR_samplePed")
Retrieve the pedigree data from the get_colony function.
ped_colony <- get_colony(path, sampledata, rm_obsolete_parents = TRUE, out = "FamAgg")

18 wolf_samples

Organize families and expand pedigree data using the org_fams function.
org_tables <- org_fams(ped_colony, sampledata, output = "both")

Run the function

Prepare data for plotting.

plot_table(plot_fams = "all”,
org_tables$fams,
org_tables$ped,

sampledata,
deadSample = c("Tissue")
)
wolf_samples Wolf monitoring genetic samples metadata
Description

Metadata of selected genetic samples of wolves collected between 2015 and 2021, in the scope of
Slovenian National Wolf Monitoring
Usage

wolf_samples

Format
A data frame with 407 rows and 7 columns:
Sample Sample unique identifier code
Date Date of sample collection (format: YYYY-MM-DD)
AnimalRef Identification string for particular animal
GeneticSex Sex of animal to which the sample belong (format: M = male, F = female)
lat latitude (N-S) of the sample (CRS: WGS84; EPSG: 4326)
Ing longitude (W-E) of the sample (CRS: WGS84; EPSG: 4326)

SType Type of the sample. (Direct Saliva, Scat, Urine, Saliva, Tissue, Decomposing Tissue, Blood)

Source

Slovenian National Wolf Monitoring

Index

x datasets
wolf_samples, 18

anim_timespan, 2
anim_timespan(), 17

check_sampledata, 3
check_sampledata(), 6, 7, 10, 16, 17

dyn_matrix, 4

get_colony, 6
get_colony(), 4,7, 10
get_ped, 7
get_ped(), 4, 10

nbtw_seasons, 8

org_fams, 10
org_fams(), 4, 16

ped_satplot, 12
ped_satplot(), 16, 17
ped_spatial, 13
ped_spatial(), 16
plot_table, 16
plot_table(), 4, 12-14

sf, 15

wolf_samples, 18

19

	anim_timespan
	check_sampledata
	dyn_matrix
	get_colony
	get_ped
	nbtw_seasons
	org_fams
	ped_satplot
	ped_spatial
	plot_table
	wolf_samples
	Index

