urlexplorer

The goal of urlexplorer is to assist you with structural analysis and pattern discovery within datasets of URLs. It provides tools for parsing URLs into their constituent components and analyzing these components to uncover insights into web site architecture and search engine optimizations (SEO).

Installation

You can install the development version of urlexplorer from GitHub with:

# install.packages("devtools")
devtools::install_github("MarekProkop/urlexplorer")

Functions

urlexplorer provides a toolkit for URL analysis structured around three verbs: split, extract, and count.

Split

These functions decompose a URL into its constituent components. Input is a character vector, and each function returns a tibble with a number of rows equal to the length of the input vector. Each column corresponds to a component of the input.

Extract

These functions are designed to retrieve specific components from a URL. Input is always a character vector, and the output is a character vector of the extracted component, matching the length of the input vector. If any component is missing, the function returns NA.

Count

These functions count occurrences of various URL components or attributes, useful for quantitative analysis. Input is a character vector, and the output is a tibble listing each component or attribute with its count.

Examples

This is a basic examples which shows you how to solve a common problem.

Declare libraries and sample data

library(urlexplorer)
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.4     ✔ readr     2.1.5
#> ✔ forcats   1.0.0     ✔ stringr   1.5.1
#> ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
#> ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
#> ✔ purrr     1.0.2     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Sample dataset included in the package

data(websitepages)
websitepages |> 
  slice_head(n = 10)
#> # A tibble: 10 × 1
#>    page                                                              
#>    <chr>                                                             
#>  1 https://www.example.com/blog?id=V6BsL494#section5                 
#>  2 https://shop.example.com/blog/specs?category=THXwLX1b             
#>  3 https://www.example.com/about?type=KP1bDjel#section4              
#>  4 https://shop.example.com/about/specs?id=Hu7DmR4e                  
#>  5 https://blog.example.com/services?type=9ndM1kiI#section1          
#>  6 https://www.example.com/services?category=cMlqq15a#section3       
#>  7 https://www.example.com/blog/detail/8jg4m?type=Rp1MrjwE           
#>  8 https://shop.example.com/products?category=uZUVQUO6#sectionNA     
#>  9 https://www.example.com/products/detail?id=qQGCCMfq#section7      
#> 10 https://www.example.com/services/data/2e0vz?type=CHQUkXxQ#section3

Split URLs into components

websitepages$page |> 
  split_url() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 7
#>    scheme host              port userinfo path                 query    fragment
#>    <chr>  <chr>            <int> <chr>    <chr>                <chr>    <chr>   
#>  1 https  www.example.com     NA <NA>     /blog                id=V6Bs… section5
#>  2 https  shop.example.com    NA <NA>     /blog/specs          categor… <NA>    
#>  3 https  www.example.com     NA <NA>     /about               type=KP… section4
#>  4 https  shop.example.com    NA <NA>     /about/specs         id=Hu7D… <NA>    
#>  5 https  blog.example.com    NA <NA>     /services            type=9n… section1
#>  6 https  www.example.com     NA <NA>     /services            categor… section3
#>  7 https  www.example.com     NA <NA>     /blog/detail/8jg4m   type=Rp… <NA>    
#>  8 https  shop.example.com    NA <NA>     /products            categor… section…
#>  9 https  www.example.com     NA <NA>     /products/detail     id=qQGC… section7
#> 10 https  www.example.com     NA <NA>     /services/data/2e0vz type=CH… section3

Split hosts into subdomains, domain, and top-level domain

websitepages$page |> 
  extract_host() |>
  split_host() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 3
#>    tld   domain  subdomain_1
#>    <chr> <chr>   <chr>      
#>  1 com   example www        
#>  2 com   example shop       
#>  3 com   example www        
#>  4 com   example shop       
#>  5 com   example blog       
#>  6 com   example www        
#>  7 com   example www        
#>  8 com   example shop       
#>  9 com   example www        
#> 10 com   example www

Split paths into segments

websitepages$page |> 
  extract_path() |>
  split_path() |> 
  slice_head(n = 10)
#> # A tibble: 10 × 3
#>    path_1   path_2 path_3
#>    <chr>    <chr>  <chr> 
#>  1 blog     <NA>   <NA>  
#>  2 blog     specs  <NA>  
#>  3 about    <NA>   <NA>  
#>  4 about    specs  <NA>  
#>  5 services <NA>   <NA>  
#>  6 services <NA>   <NA>  
#>  7 blog     detail 8jg4m 
#>  8 products <NA>   <NA>  
#>  9 products detail <NA>  
#> 10 services data   2e0vz

Get a frequency table of hosts

websitepages$page |> 
  count_hosts(sort = TRUE)
#> # A tibble: 3 × 2
#>   host                 n
#>   <chr>            <int>
#> 1 www.example.com    607
#> 2 shop.example.com   301
#> 3 blog.example.com    92

Filter by host and count path segments

Identify the most common path 1st segments for a specific host.

websitepages |>
  filter(extract_host(page) == "www.example.com") |>
  pull(page) |>
  extract_path() |>
  count_path_segments(segment_index = 1) |> 
  slice_max(order_by = n, n = 5)
#> # A tibble: 5 × 2
#>   path_segment     n
#>   <chr>        <int>
#> 1 products       124
#> 2 help           108
#> 3 blog           100
#> 4 about           95
#> 5 user            91

Frequency table of parametter names

Create a simple frequency table of query parameters

websitepages$page |>
  extract_query() |>
  count_param_names(sort = TRUE)
#> # A tibble: 4 × 2
#>   param_name     n
#>   <chr>      <int>
#> 1 category     235
#> 2 type         228
#> 3 session      219
#> 4 id           218

Add sample values for each parameter

A little bit more complex example: extract query parameters, count the frequency of each parameter name, and provide a sample of values for each parameter.

websitepages$page |>
  extract_query() |>
  split_query() |>
  pivot_longer(dplyr::everything()) |>
  drop_na(value) |>
  summarise(
    n = n(),
    values = unique(value) |>
      paste(collapse = ", ") |>
      str_trunc(40),
    .by = name
  ) |>
  arrange(desc(n))
#> # A tibble: 4 × 3
#>   name         n values                                  
#>   <chr>    <int> <chr>                                   
#> 1 category   235 THXwLX1b, cMlqq15a, uZUVQUO6, xS4RSMP...
#> 2 type       228 KP1bDjel, 9ndM1kiI, Rp1MrjwE, CHQUkXx...
#> 3 session    219 V3jghEMV, 1vzBsZqs, N1m1YcOd, Zm3vTmU...
#> 4 id         218 V6BsL494, Hu7DmR4e, qQGCCMfq, jLeGCg5...