
Package ‘unifir’
February 1, 2024

Type Package

Title A Unifying API for Calling the 'Unity' '3D' Video Game Engine

Version 0.2.4

Description Functions for the creation and manipulation of scenes and objects
within the 'Unity' '3D' video game engine (<https://unity.com/>). Specific
focuses include the creation and import of terrain data and 'GameObjects' as
well as scene management.

License MIT + file LICENSE

Depends R (>= 3.5.0)

Imports glue, methods, proceduralnames, R6, utils

Suggests terrainr, covr, knitr, lintr, pkgdown, rmarkdown, styler,
testthat (>= 3.0.0), terra, sf

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Config/testthat/edition 3

Config/testthat/parallel true

URL https://docs.ropensci.org/unifir/,

https://github.com/ropensci/unifir

BugReports https://github.com/ropensci/unifir/issues

VignetteBuilder knitr

NeedsCompilation no

Author Michael Mahoney [aut, cre] (<https://orcid.org/0000-0003-2402-304X>),
Will Jones [rev] (Will reviewed the package (v. 0.2.0) for rOpenSci,

see <https://github.com/ropensci/software-review/issues/521>),
Tan Tran [rev] (Tan reviewed the package (v. 0.2.0) for rOpenSci, see

<https://github.com/ropensci/software-review/issues/521>)

Maintainer Michael Mahoney <mike.mahoney.218@gmail.com>

Repository CRAN

Date/Publication 2024-02-01 18:10:02 UTC

1

https://unity.com/
https://docs.ropensci.org/unifir/
https://github.com/ropensci/unifir
https://github.com/ropensci/unifir/issues
https://orcid.org/0000-0003-2402-304X
https://github.com/ropensci/software-review/issues/521
https://github.com/ropensci/software-review/issues/521

2 action

R topics documented:

action . 2
add_default_player . 3
add_light . 6
add_prop . 7
add_texture . 8
associate_coordinates . 9
available_assets . 10
check_debug . 11
create_if_not . 11
create_terrain . 11
create_unity_project . 13
find_unity . 14
get_asset . 15
import_asset . 15
instantiate_prefab . 16
load_png . 18
load_scene . 19
make_script . 20
new_scene . 21
read_raw . 22
save_scene . 23
set_active_scene . 24
set_script_defaults . 25
unifir_prop . 25
unity_version . 26
validate_path . 27
waiver . 28

Index 30

action Build and execute a unifir_script

Description

Build and execute a unifir_script

Usage

action(script, write = TRUE, exec = TRUE, quit = TRUE)

add_default_player 3

Arguments

script The unifir_script object (as generated by make_script) to build and execute.

write Boolean: Write the generated script to a file?

exec Boolean: Execute the script inside of the Unity project? Note that if write =
FALSE, exec cannot be TRUE.

quit Boolean: Quit Unity after execution?

Value

If exec = FALSE, the original unifir_script object passed to script. If exec = TRUE, the same
unifir_script object with its props replaced by the C# they generate.

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

unity = waiver()
)

Then add any number of props to it:
script <- add_light(script)

Then call `action` to execute the script!

if (interactive()) {
action(script)

}

add_default_player Add assets to a Unity scene

Description

These functions add assets available at https://github.com/mikemahoney218/unity_assets/ to a Unity
scene.

Usage

add_default_player(
script,
controller = c("Player", "FootstepsPlayer", "JetpackPlayer", "Third Person"),
asset_directory = NULL,
lazy = TRUE,

4 add_default_player

method_name = NULL,
destination_scene = NULL,
x_position = 0,
y_position = 0,
z_position = 0,
x_scale = 1,
y_scale = 1,
z_scale = 1,
x_rotation = 0,
y_rotation = 0,
z_rotation = 0,
exec = TRUE

)

add_default_tree(
script,
tree,
asset_directory = NULL,
lazy = TRUE,
method_name = NULL,
destination_scene = NULL,
x_position = 0,
y_position = 0,
z_position = 0,
x_scale = 1,
y_scale = 1,
z_scale = 1,
x_rotation = 0,
y_rotation = 0,
z_rotation = 0,
exec = TRUE

)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

controller Which controller to use. "Player", the default, is a simple first-person controller.
"FootstepsPlayer" adds footsteps to this controller, while "JetpackPlayer" adds
a "jetpack" with limited fuel. ""Third Person" lets you control a small cylinder
in third person.

asset_directory

A file path to the directory containing the asset, or alternatively, to which the
default assets should be saved. Defaults to tools::R_user_dir("unifir").

lazy Boolean: if TRUE, unifir will attempt to only copy the files once per run of a
script; if FALSE, unifir will copy the files as many times as requested, overwrit-
ing pre-existing files each time.

add_default_player 5

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

destination_scene

Optionally, the scene to instantiate the prefabs in. Ignored if NULL, the default.
x_position, y_position, z_position

The position of the GameObject in world space.
x_scale, y_scale, z_scale

The scale of the GameObject (relative to its parent object).
x_rotation, y_rotation, z_rotation

The rotation of the GameObject to create, as Euler angles.

exec Logical: Should the C# method be included in the set executed by MainFunc?

tree Which tree to use. There are currently 12 generic tree objects available, named
"tree_1" through "tree_12". The number of a tree (1-12) can be specified instead
of the full name.

Details

In effect, these functions provide a thin wrapper across instantiate_prefab and import_asset. By
providing the directory an asset is stored in, and the path to the prefab file once that directory has
been copied into Unity, these files will add prefabs to specified locations throughout the scene. This
function will also download the necessary assets and handles specifying file paths.

add_default_player adds "player" controllers to a Unity scene. add_default_tree adds tree GameOb-
jects.

Value

The unifir_script object passed to script, with props for adding assets appended.

See Also

Other props: add_light(), add_prop(), add_texture(), create_terrain(), import_asset(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_prop(), create_unity_project(), find_unity(), get_asset(), load_png(),
load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(), validate_path(),
waiver()

Examples

if (interactive()) {
First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Now add props:
script <- add_default_player(script)
script <- add_default_tree(script, 1)

6 add_light

script <- save_scene(script)
}

Lastly, execute the script via the `action` function

add_light Add a light to a Unity scene

Description

This function creates light objects within a Unity scene. This function can only add one light at a
time – call the function multiple times to add more than one light.

Usage

add_light(
script,
light_type = c("Directional", "Point", "Spot", "Area"),
method_name = NULL,
light_name = "Light",
x_position = 0,
y_position = 0,
z_position = 0,
x_scale = 1,
y_scale = 1,
z_scale = 1,
x_rotation = 50,
y_rotation = -30,
z_rotation = 0,
exec = TRUE

)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

light_type One of "Directional", "Point", "Spot", or "Area". See https://docs.unity3d.
com/Manual/Lighting.html for more information.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

light_name The name to assign the Light object.
x_position, y_position, z_position

The position of the GameObject in world space.
x_scale, y_scale, z_scale

The scale of the GameObject (relative to its parent object).

https://docs.unity3d.com/Manual/Lighting.html
https://docs.unity3d.com/Manual/Lighting.html

add_prop 7

x_rotation, y_rotation, z_rotation

The rotation of the GameObject to create, as Euler angles.

exec Logical: Should the C# method be included in the set executed by MainFunc?

Value

The unifir_script object passed to script, with props for adding lights appended.

See Also

Other props: add_default_player(), add_prop(), add_texture(), create_terrain(), import_asset(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Now add props:
script <- add_light(script)

Lastly, execute the script via the `action` function

add_prop Add a prop to a unifir script

Description

This function is exported so that developers can add their own props in new packages, without
needing to re-implement the prop and script classes themselves. It is not expected that end users
will need this function.

Usage

add_prop(script, prop, exec = TRUE)

Arguments

script A script object (from make_script) to append the prop to.

prop A unifir_prop object (from unifir_prop) to add to the script.

exec Logical: Should the method created by the prop be called in the MainFunc
method?

8 add_texture

See Also

Other props: add_default_player(), add_light(), add_texture(), create_terrain(), import_asset(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), create_unity_project(), find_unity(), get_asset(),
load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

script <- make_script("example_script", unity = waiver())
prop <- unifir_prop(

prop_file = waiver(), # Must be a file that exists or waiver()
method_name = NULL, # Auto-generated if NULL or NA
method_type = "ExampleProp", # Length-1 character vector
parameters = list(), # Not validated, usually a list
build = function(script, prop, debug) {},
using = character(0)

)
script <- add_prop(script, prop)

add_texture Add a Texture2D layer to a terrain tile object

Description

This function adds a helper method, AddTexture, to the C# script. This function is typically used to
add textures to heightmaps in a Unity scene, for instance by functions like create_terrain. It requires
some arguments be provided at the C# level, and so is almost always called with exec = FALSE.

Usage

add_texture(script, method_name = NULL, exec = FALSE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

Value

The unifir_script object passed to script, with an AddTexture method appended.

associate_coordinates 9

See Also

Other props: add_default_player(), add_light(), add_prop(), create_terrain(), import_asset(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

unity = waiver()
)

Now add props:
script <- add_texture(script)

Lastly, execute the script via the `action` function

associate_coordinates Associate vector coordinates with a raster surface for Unity import

Description

Unity uses a left-handed coordinate system, which is effectively "flipped" from our normal way of
thinking about spatial coordinate systems. It also can only import terrain as square tiles of side 2^x
+ 1, for x between 5 and 12. As a result, importing objects into a Unity scene so that they align with
terrain surfaces is trickier than you’d expect. This function "associates" the XY coordinates from
some sf object, likely a point data set, with some raster object.

Usage

associate_coordinates(object, raster, side_length = 4097)

Arguments

object The sf object to take coordinates from. The object will be reprojected (via
sf::st_transform) to align with raster.

raster A raster or file path to a raster to associate coordinates with. Note that different
rasters will produce different coordinate outputs; you should run this function
with the same raster you plan on bringing into Unity. Any file or object that can
be read via terra::rast can be used.

side_length The side length of terrain tiles, in map units, you intend to bring into Unity.
Must be a value equal to 2^x + 1, for x between 5 and 12. All functions in the
unifir family default to 4097.

10 available_assets

Value

A data.frame with two columns, X and Y, representing the re-aligned coordinates. If object is
point data (or anything object that sf::st_coordinates returns a single row for each row of), these
rows will be in the same order as object (and so can be appended via cbind).

Examples

Not run:
if (!isTRUE(as.logical(Sys.getenv("CI")))) {

simulated_data <- data.frame(
id = seq(1, 100, 1),
lat = runif(100, 44.04905, 44.17609),
lng = runif(100, -74.01188, -73.83493)

)
simulated_data <- sf::st_as_sf(

simulated_data,
coords = c("lng", "lat"),
crs = 4326
)
output_files <- terrainr::get_tiles(simulated_data)
temptiff <- tempfile(fileext = ".tif")
terrainr::merge_rasters(output_files["elevation"][[1]], temptiff)
associate_coordinates(simulated_data, temptiff)

}

End(Not run)

available_assets Vector of assets unifir can download and import

Description

This object contains the set of assets unifir is able to download and import (through get_asset and
import_asset). These objects are all released under permissive open-source licenses (currently, ei-
ther CC-0 1.0 or MIT). More information on the assets may be found at https://github.com/mikemahoney218/unity_assets
.

Usage

available_assets

Format

A character vector with 13 elements, each representing an asset which can be imported.

Source

https://github.com/mikemahoney218/unity_assets

https://github.com/mikemahoney218/unity_assets

check_debug 11

check_debug Check if unifir should run in debug mode

Description

When running in debug mode, unifir will write nothing to disk.

Usage

check_debug()

create_if_not Create directory if it doesn’t exist

Description

Create directory if it doesn’t exist

Usage

create_if_not(path, recur = FALSE)

Arguments

path The path to be created

recur Boolean: create directories recursively?

create_terrain Create a terrain tile with optional image overlay

Description

Create a terrain tile with optional image overlay

12 create_terrain

Usage

create_terrain(
script,
method_name = NULL,
heightmap_path,
x_pos,
z_pos,
width,
height,
length,
heightmap_resolution,
texture_path = "",
exec = TRUE

)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

heightmap_path The file path to the heightmap to import as terrain.

x_pos, z_pos The position of the corner of the terrain.
width, height, length

The dimensions of the terrain tile, in linear units.
heightmap_resolution

The resolution of the heightmap image.

texture_path Optional: the file path to the image to use as a terrain overlay.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), import_asset(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Examples

if (requireNamespace("terra", quietly = TRUE)) {
raster <- tempfile(fileext = ".tiff")
r <- terra::rast(matrix(rnorm(1000^2, mean = 100, sd = 20), 1000),

extent = terra::ext(0, 1000, 0, 1000)
)
terra::writeRaster(r, raster)

script <- make_script("example_script",
unity = waiver()

)

create_unity_project 13

create_terrain(
script,
heightmap_path = raster,
x_pos = 0,
z_pos = 0,
width = 1000,
height = terra::minmax(r)[[2]],
length = 1000,
heightmap_resolution = 1000

)
}

create_unity_project Create a new Unity project.

Description

Create a new Unity project.

Usage

create_unity_project(path, quit = TRUE, unity = NULL)

Arguments

path The path to create a new Unity project at.
quit Logical: quit Unity after creating the project?
unity The path to the Unity executable on your system (importantly, not the Unity-

Hub executable). If NULL, checks to see if the environment variable or option
unifir_unity_path is set; if so, uses that path (preferring the environment
variable over the option if the two disagree).

Value

TRUE, invisibly.

See Also

Other utilities: add_default_player(), add_prop(), find_unity(), get_asset(), load_png(),
load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(), validate_path(),
waiver()

Examples

if (interactive()) create_unity_project(file.path(tempdir(), "project"))

14 find_unity

find_unity Find the Unity executable on a machine.

Description

If the path to Unity is not provided to a function, this function is invoked to attempt to find it. To do
so, it goes through the following steps:

1. Attempt to load the "unifir_unity_path" environment variable.

2. Attempt to load the "unifir_unity_path" option.

Assuming that neither points to an actual file, this function will then check the default installation
paths for Unity on the user’s operating system. If not found, this function will error.

Usage

find_unity(unity = NULL, check_path = TRUE)

Arguments

unity Character: If provided, this function will quote the provided string (if necessary)
and return it.

check_path Logical: If TRUE, this function will check if the Unity executable provided as
an argument, environment variable, or option exists. If it does not, this function
will then attempt to find one, and will error if not found. If FALSE, this function
will never error.

Value

The path to the Unity executable on the user’s machine, as a length-1 character vector.

See Also

Other utilities: add_default_player(), add_prop(), create_unity_project(), get_asset(),
load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

if (interactive()) {
try(find_unity())

}

get_asset 15

get_asset Download prefabs for Unity

Description

This is a simple helper function downloading the assets stored at https://github.com/mikemahoney218/unity_assets
.

Usage

get_asset(asset, directory = NULL)

Arguments

asset The asset to download. Available asset names are provided in available_assets.

directory Optionally, the directory to extract the downloaded models in. If NULL, the
default, saves to tools::R_user_dir("unifir").

See Also

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

if (interactive()) {
get_asset(asset = "tree_1", directory = tempdir())

}

import_asset Import assets into Unity.

Description

Import assets into Unity.

Usage

import_asset(script, asset_path, lazy = TRUE)

16 instantiate_prefab

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

asset_path The file path to the asset to import. If a directory, the entire directory will be re-
cursively copied. Note that this function doesn’t have a method_name argument:
the asset_path is used as the method name. This function is not currently vec-
torized; call it separately for each asset you need to import.

lazy Boolean: if TRUE, unifir will attempt to only copy the files once per run of a
script; if FALSE, unifir will copy the files as many times as requested, overwrit-
ing pre-existing files each time.

Value

script with a new prop.

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

unity = waiver()
)

CRAN also doesn't have any props to install,
so we'll make a fake prop location:
prop_directory <- file.path(tempdir(), "props")
dir.create(prop_directory)

Now add props:
script <- import_asset(script, prop_directory)

Lastly, execute the script via the `action` function

instantiate_prefab Add a prefab to a Unity scene

instantiate_prefab 17

Description

This function creates objects (specifically, prefabs) within a Unity scene. This function is vectorized
over all functions from prefab_path through z_rotation; to add multiple objects, simply provide
vectors to each argument. Note that all arguments will be automatically recycled if not the same
length; this may produce undesired results. This function is only capable of altering a single scene
at once – call the function multiple times if you need to manipulate multiple scenes.

Usage

instantiate_prefab(
script,
method_name = NULL,
destination_scene = NULL,
prefab_path,
x_position = 0,
y_position = 0,
z_position = 0,
x_scale = 1,
y_scale = 1,
z_scale = 1,
x_rotation = 0,
y_rotation = 0,
z_rotation = 0,
exec = TRUE

)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

destination_scene

Optionally, the scene to instantiate the prefabs in. Ignored if NULL, the default.

prefab_path File path to the prefab to be instantiated. This should be relative to the Unity
project root directory, and likely begins with "Assets". Alternatively, if this is
one of the elements in

x_position, y_position, z_position

The position of the GameObject in world space.

x_scale, y_scale, z_scale

The scale of the GameObject (relative to its parent object).

x_rotation, y_rotation, z_rotation

The rotation of the GameObject to create, as Euler angles.

exec Logical: Should the C# method be included in the set executed by MainFunc?

18 load_png

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Now add props:
script <- instantiate_prefab(script, prefab_path = "Assets/some.prefab")

Lastly, execute the script via the `action` function

load_png Create a Texture2D from a PNG file

Description

This function adds a helper method, LoadPNG, to the C# script. This function is typically used
by other C# methods to bring in textures into a Unity scene, for instance by functions like cre-
ate_terrain. It requires some arguments be provided at the C# level, and so is almost always called
with exec = FALSE.

Usage

load_png(script, method_name = NULL, exec = FALSE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_scene(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

load_scene 19

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Then add any number of props to it:
script <- load_png(script)

Then call `action` to execute the script!

load_scene Load a scene in a Unity project.

Description

Load a scene in a Unity project.

Usage

load_scene(script, scene_name, method_name = NULL, exec = TRUE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

scene_name The name of the scene to load.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), new_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

20 make_script

Now add props:
script <- load_scene(script, scene_name = "some_scene")

Lastly, execute the script via the `action` function

make_script Create an empty unifir_script object.

Description

unifir relies upon "script" objects, which collect "prop" objects (C# methods) which then may be
executed within a Unity project via the action function.

Usage

make_script(
project,
script_name = NULL,
scene_name = NULL,
unity = find_unity(),
initialize_project = NULL

)

Arguments

project The directory path of the Unity project.

script_name The file name to save the script at. The folder location and file extensions will
be added automatically.

scene_name The default scene to operate within. If a function requires a scene name and one
is not provided, this field will be used.

unity The location of the Unity executable to create projects with.
initialize_project

If TRUE, will call create_unity_project to create a Unity project at project. If
FALSE, will not create a new project. If NULL, will create a new project if
project does not exist.

Value

A unifir_script object.

Examples

Create an empty script file
In practice, you'll want to set `project` to the project path to create
and `unity` to `NULL` (the default)
make_script(project = waiver(), unity = waiver())

new_scene 21

new_scene Create a new scene in a Unity project.

Description

Create a new scene in a Unity project.

Usage

new_scene(
script,
setup = c("EmptyScene", "DefaultGameObjects"),
mode = c("Additive", "Single"),
method_name = NULL,
exec = TRUE

)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

setup One of "EmptyScene" ("No game objects are added to the new Scene.") or "De-
faultGameObjects" ("Adds default game objects to the new Scene (a light and
camera).")

mode One of "Additive" ("The newly created Scene is added to the current open
Scenes.") or "Single" ("All current open Scenes are closed and the newly created
Scene are opened.")

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), load_scene(), read_raw(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

22 read_raw

unity = waiver()
)

Now add props:
script <- new_scene(script)

Lastly, execute the script via the `action` function

read_raw Read a RAW file in as a float array

Description

This function adds a helper method, ReadRaw, to the C# script. This function is typically used to
bring in heightmaps into a Unity scene, for instance by functions like create_terrain. It requires
some arguments be provided at the C# level, and so is almost always called with exec = FALSE.

Usage

read_raw(script, method_name = NULL, exec = FALSE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), load_scene(), new_scene(), save_scene(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), new_scene(), save_scene(), set_active_scene(),
validate_path(), waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Now add props:
script <- read_raw(script)

Lastly, execute the script via the `action` function

save_scene 23

save_scene Save a scene in a Unity project.

Description

Save a scene in a Unity project.

Usage

save_scene(script, scene_name = NULL, method_name = NULL, exec = TRUE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

scene_name The name to save the scene to.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(),
set_active_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), new_scene(), read_raw(), set_active_scene(),
validate_path(), waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

unity = waiver()
)

Now add props:
script <- save_scene(script, scene_name = "some_scene")

Lastly, execute the script via the `action` function

24 set_active_scene

set_active_scene Set a single scene to active.

Description

Set a single scene to active.

Usage

set_active_scene(script, scene_name = NULL, method_name = NULL, exec = FALSE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

scene_name The name of the scene to set as the active scene.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(),
save_scene(), validate_path()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(), validate_path(),
waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script",

unity = waiver()
)

Now add props:
script <- set_active_scene(script, scene_name = "some_scene")

Lastly, execute the script via the `action` function

set_script_defaults 25

set_script_defaults Fill in plot holes in a script

Description

Fill in plot holes in a script

Usage

set_script_defaults(script, debug)

Arguments

script The unifir_script to fill elements of

debug Boolean: run in debug mode?

unifir_prop The class for unifir prop objects

Description

This function is exported so that developers can add their own props in new packages, without
needing to re-implement the prop and script classes themselves. It is not expected that end users
will need this function.

Usage

unifir_prop(prop_file, method_name, method_type, parameters, build, using)

Arguments

prop_file The system location for the C# template file

method_name The name of the method, in C# code

method_type The type of the method (usually matches its file name); scripts can have multi-
ple versions of the same method, each with different method_name values, all
sharing the same method_type.

parameters Method-specific parameters, typically used in the build stage.

build A function that takes three arguments, script, prop, and debug, and uses those
to construct the C# method.

using A character vector of imports required for the method.

26 unity_version

Details

This function will check each argument for correctness. To be specific, it performs the following
checks:

• prop_file must be either a waiver object (created by waiver) or a file path of length 1 point-
ing to a file that exists

• method_name will be automatically generated if not existing. If it exists, it must be a character
vector of length 1

• method_type must be a character vector of length 1

• build must be a function with the arguments script, prop, and debug (in that order, with
no other arguments). Any other arguments needed by your build function should be passed as
prop parameters.

• using must be a character vector (of any length, including 0)

If your prop needs data or arguments beyond these, store them as a list in parameters, which is
entirely unchecked.

Value

An R6 object of class unifir_prop

The debug argument

When Sys.getenv(unifir_debugmode) returns anything other than "", action runs in "debug
mode". In addition to setting exec and write to FALSE in action, this mode also attempts to disable
any prop functionality that would make changes to the user’s disk – no files or directories should be
altered. In this mode, action will pass debug = TRUE as an argument to your prop; your prop should
respect the debug mode and avoid making any changes.

Examples

unifir_prop(
prop_file = waiver(), # Must be a file that exists or waiver()
method_name = NULL, # Auto-generated if NULL or NA
method_type = "ExampleProp", # Length-1 character vector
parameters = list(), # Not validated, usually a list
build = function(script, prop, debug) {},
using = character(0)

)

unity_version Print the version of the Unity Editor in use.

Description

Print the version of the Unity Editor in use.

validate_path 27

Usage

unity_version(unity = NULL)

Arguments

unity The path to the Unity executable on your system (importantly, not the Unity-
Hub executable). If NULL, checks to see if the environment variable or option
unifir_unity_path is set; if so, uses that path (preferring the environment
variable over the option if the two disagree).

Value

A character vector of length 1 containing the version of Unity in use.

Examples

try(
unity_version()

)

validate_path Validate a file path exists

Description

validate_path creates a generic C# method which takes a single argument and checks to make sure
it exists. Your C# code calling the method must provide the path to validate. validate_single_path
hard-codes the path to check in the C# code. This allows you to specify the path to check from R.

Usage

validate_path(script, method_name = NULL, exec = FALSE)

validate_single_path(script, path, method_name = NULL, exec = TRUE)

Arguments

script A unifir_script object, created by make_script or returned by an add_prop_*
function.

method_name The internal name to use for the C# method created. Will be randomly generated
if not set.

exec Logical: Should the C# method be included in the set executed by MainFunc?

path The file path to validate

28 waiver

See Also

Other props: add_default_player(), add_light(), add_prop(), add_texture(), create_terrain(),
import_asset(), instantiate_prefab(), load_png(), load_scene(), new_scene(), read_raw(),
save_scene(), set_active_scene()

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
waiver()

Examples

First, create a script object.
CRAN doesn't have Unity installed, so pass
a waiver object to skip the Unity-lookup stage:
script <- make_script("example_script", unity = waiver())

Now add props:
script <- validate_path(script) # Don't specify the path in R
script <- validate_single_path(# Specify the path in R

script,
"file_that_exists.txt"

)

waiver A waiver object.

Description

This function is borrowed from ggplot2. It creates a "flag" object indicating that a value has been
intentionally left blank (because it will be filled in by something else). Often, a function argument
being missing or NULL will result in an error, while passing waiver() will cause the function to
look elsewhere in the script for an acceptable value.

Usage

waiver()

Value

An empty list of class waiver.

References

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

See Also

Other utilities: add_default_player(), add_prop(), create_unity_project(), find_unity(),
get_asset(), load_png(), load_scene(), new_scene(), read_raw(), save_scene(), set_active_scene(),
validate_path()

waiver 29

Examples

waiver()

Index

∗ datasets
available_assets, 10

∗ props
add_default_player, 3
add_light, 6
add_prop, 7
add_texture, 8
create_terrain, 11
import_asset, 15
instantiate_prefab, 16
load_png, 18
load_scene, 19
new_scene, 21
read_raw, 22
save_scene, 23
set_active_scene, 24
validate_path, 27

∗ scripts
make_script, 20

∗ utilities
add_default_player, 3
add_prop, 7
create_unity_project, 13
find_unity, 14
get_asset, 15
load_png, 18
load_scene, 19
new_scene, 21
read_raw, 22
save_scene, 23
set_active_scene, 24
validate_path, 27
waiver, 28

action, 2, 20, 26
add_default_player, 3, 5, 7–9, 12–16, 18,

19, 21–24, 28
add_default_tree, 5
add_default_tree (add_default_player), 3
add_light, 5, 6, 8, 9, 12, 16, 18, 19, 21–24, 28

add_prop, 5, 7, 7, 9, 12–16, 18, 19, 21–24, 28
add_texture, 5, 7, 8, 8, 12, 16, 18, 19, 21–24,

28
associate_coordinates, 9
available_assets, 10, 15

cbind, 10
check_debug, 11
create_if_not, 11
create_terrain, 5, 7–9, 11, 16, 18, 19,

21–24, 28
create_unity_project, 5, 8, 13, 14, 15,

18–24, 28

find_unity, 5, 8, 13, 14, 15, 18, 19, 21–24, 28

get_asset, 5, 8, 10, 13, 14, 15, 18, 19, 21–24,
28

import_asset, 5, 7–10, 12, 15, 18, 19, 21–24,
28

instantiate_prefab, 5, 7–9, 12, 16, 16, 18,
19, 21–24, 28

load_png, 5, 7–9, 12–16, 18, 18, 19, 21–24, 28
load_scene, 5, 7–9, 12–16, 18, 19, 21–24, 28

make_script, 3, 4, 6–8, 12, 16–19, 20, 21–24,
27

new_scene, 5, 7–9, 12–16, 18, 19, 21, 22–24,
28

read_raw, 5, 7–9, 12–16, 18, 19, 21, 22, 23,
24, 28

save_scene, 5, 7–9, 12–16, 18, 19, 21, 22, 23,
24, 28

set_active_scene, 5, 7–9, 12–16, 18, 19,
21–23, 24, 28

set_script_defaults, 25

30

INDEX 31

sf::st_coordinates, 10
sf::st_transform, 9

terra::rast, 9

unifir_prop, 7, 25
unity_version, 26

validate_path, 5, 7–9, 12–16, 18, 19, 21–24,
27, 27, 28

validate_single_path, 27
validate_single_path (validate_path), 27

waiver, 5, 8, 13–15, 18, 19, 21–24, 26, 28, 28

	action
	add_default_player
	add_light
	add_prop
	add_texture
	associate_coordinates
	available_assets
	check_debug
	create_if_not
	create_terrain
	create_unity_project
	find_unity
	get_asset
	import_asset
	instantiate_prefab
	load_png
	load_scene
	make_script
	new_scene
	read_raw
	save_scene
	set_active_scene
	set_script_defaults
	unifir_prop
	unity_version
	validate_path
	waiver
	Index

