## ----setup, echo=FALSE, message=FALSE, warning=FALSE-------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 10, fig.height = 10 ) options(width=80) # includes: in_header: "header.html" library(tmt) ## ----rm_nmst, warning=FALSE--------------------------------------------------- # simulate some data dat <- tmt:::sim.rm(theta = 100,b = 10,seed = c(1111,1112)) # estimate item parameters dat.rm <- tmt_rm(dat = dat, optimization = "optim") # print summary summary(dat.rm) ## ----rm_mst, warning=FALSE---------------------------------------------------- # Example for multistage-design mstdesign <- " M1 =~ c(i1, i2, i3, i4, i5) M2 =~ c(i6, i7, i8, i9, i10) M3 =~ c(i11, i12, i13, i14, i15) # define path p1 := M2(0,2) + M1(0,5) p2 := M2(3,5) + M3(0,5) " # generate item parameters with corresponding names to the multistage design items <- seq(-1,1, length.out = 15) names(items) <- paste0("i",1:length(items)) # generate random data under given multistage design dat <- tmt_sim(mstdesign = mstdesign, items = items, persons = 500) # estimate the item parameters under the given multistage-design dat.rm <- tmt_rm(dat = dat, mstdesign = mstdesign, optimization = "optim") # print summary of item parameters summary(dat.rm) ## ----rm_mst_cumulative, warning=FALSE----------------------------------------- # Example for multistage-design mstdesign <- " M1 =~ paste0('i',21:30) M2 =~ paste0('i',11:20) M3 =~ paste0('i', 1:10) M4 =~ paste0('i',31:40) M5 =~ paste0('i',41:50) M6 =~ paste0('i',51:60) # define path p1 := M1(0, 5) += M2( 0,10) += M3 p2 := M1(0, 5) += M2(11,15) += M4 p3 := M1(6,10) += M5( 6,15) += M4 p4 := M1(6,10) += M5(16,20) += M6 " # generate item parameters with corresponding names to the multistage design items <- seq(-1,1, length.out = 60) names(items) <- paste0("i",1:length(items)) # generate random data under given multistage design dat <- tmt_sim(mstdesign = mstdesign, items = items, persons = 1000) # estimate the item parameters under the given multistage-design dat.rm <- tmt_rm(dat = dat, mstdesign = mstdesign, optimization = "optim") # print summary of item parameters summary(dat.rm) ## ----rm_lrtest, warning=FALSE------------------------------------------------- # simulate some data dat_nmst <- tmt:::sim.rm(theta = 100,b = 10,seed = c(1111,1112)) # estimate item parameters dat_nmst_rm <- tmt_rm(dat = dat_nmst, optimization = "optim") # calculate likelihood ratio-test dat_lrt_nmst <- tmt_lrtest(dat_nmst_rm, optimization = "optim") # print summary summary(dat_lrt_nmst) ## ----rm_lrtest_mst, warning=FALSE--------------------------------------------- # example of multistage-design mstdesign <- " M1 =~ c(i1, i2, i3, i4, i5) M2 =~ c(i6, i7, i8, i9, i10) M3 =~ c(i11, i12, i13, i14, i15) # define path p1 := M2(0,2) + M1(0,5) p2 := M2(3,5) + M3(0,5) " # generate item parameters with corresponding names to the multistage design items <- seq(-1,1, length.out = 15) names(items) <- paste0("i",1:length(items)) # generate random data under given multistage design dat_mst <- tmt_sim(mstdesign = mstdesign, items = items, persons = 500, seed = 1111) # estimate the item parameters under the given multistage-design dat_mst_rm <- tmt_rm(dat = dat_mst, mstdesign = mstdesign, optimization = "optim") # calculate likelihood ratio-test dat_lrt_mst <- tmt_lrtest(dat_mst_rm, optimization = "optim") # print summary summary(dat_lrt_mst) ## ----gmt, warning=FALSE------------------------------------------------------- # example of multistage-design items <- seq(-1,1,length.out = 30) names(items) <- paste0("i",1:30) persons = 100 mean = 0 sd = 1 dat <- tmt:::sim.rm(theta = persons, b = items, c(1111,1112)) dat.rm <- tmt_rm(dat, optimization = "optim") dat.lrt <- tmt_lrtest(dat.rm, split = "median", optimization = "optim") info <- rep(c("group_a","group_b"),each = 15) names(info) <- paste0("i",1:30) drop <- c("i1","i18","i20","i10") tmt_gmc(object = dat.lrt, ellipse = TRUE, info = info, drop = drop, title = "graphical model check", alpha = 0.05, legendtitle = "split criteria")