Package 'timetk'

July 22, 2025

```
Title A Tool Kit for Working with Time Series
Version 2.9.0
Description Easy visualization, wrangling, and feature engineering of time series data for
      forecasting and machine learning prediction. Consolidates and extends time series functionality
      from packages including 'dplyr', 'stats', 'xts', 'forecast', 'slider', 'padr', 'recipes', and 'rsample'.
URL https://github.com/business-science/timetk,
      https://business-science.github.io/timetk/
BugReports https://github.com/business-science/timetk/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
Depends R (>= 3.3.0)
Imports recipes (>= 1.0.4), rsample, dplyr (>= 1.0.0), ggplot2 (>=
      3.4.0), forcats, stringr, plotly, lubridate (>= 1.6.0), padr
      (>= 0.5.2), purrr (>= 0.2.2), readr (>= 1.3.0), stringi (>= 0.5.2)
      1.4.6), tibble (>= 3.0.3), tidyr (>= 1.1.0), xts (>= 0.9-7),
      zoo (>= 1.7-14), rlang (>= 1.1.1), tidyselect (>= 1.1.0),
      slider, anytime, timeDate, forecast, tsfeatures, hms, generics
Suggests modeltime, glmnet, workflows, parsnip, tune (>= 0.1.2),
      knitr, rmarkdown, broom, scales, testthat, fracdiff,
      timeSeries, tseries, trelliscopejs
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Matt Dancho [aut, cre],
      Davis Vaughan [aut]
Maintainer Matt Dancho <mdancho@business-science.io>
Repository CRAN
Date/Publication 2023-10-31 22:30:02 UTC
```

Type Package

2 Contents

Contents

timetk-package	4
anomalize	4
between_time	7
bike_sharing_daily	9
box_cox_vec	10
condense_period	12
diff_vec	14
FANG	16
— J—	17
filter_period	19
	20
future_frame	23
	25
<u>e</u>	26
log_interval_vec	28
	29
m4_hourly	30
m4_monthly	31
m4_quarterly	32
m4_weekly	32
m4_yearly	33
mutate_by_time	34
	36
pad_by_time	37
1 -	40
r 8	41
<u> </u>	14
1 = 7= 0	1 8
plot_seasonal_diagnostics	
plot_stl_diagnostics	
	57
1 1	51
1 – – – –	55
1 = = = 0	57
	59
slice_period	
slidify	12
slidify_vec	76
smooth_vec	79
standardize_vec	31
1	33
<u> </u>	35
<u> </u>	37
	90
1 - 8-	93
step_slidify	96

Contents 3

	181
wikipedia_traffic_daily	180
walmart_sales_weekly	
ts_impute_vec	
ts_clean_vec	
tk_zooreg	
tk_zoo	
tk_xts	
tk_tsfeatures	
tk_ts	
tk_time_series_cv_plan	
tk_tbl	
tk_summary_diagnostics	
tk_stl_diagnostics	
tk_seasonal_diagnostics	
tk_make_timeseries	
tk_make_holiday_sequence	
tk_make_future_timeseries	
tk_index	
tk_get_timeseries_variables	
tk_get_timeseries_unit_frequency	
tk_get_timeseries	
tk_get_holiday	
tk_get_frequency	
tk_augment_timeseries	
tk_augment_slidify	
tk_augment_lags	
tk_augment_holiday	
tk_augment_fourier	
tk_augment_differences	
•	
tk_aci_diagnostics	
time_series_split	
time_series_cv	
time_arithmetic	
taylor_30_min	
summarise_by_time	
step_ts_inipute	
step_ts_impute	
step_timeseries_signature	
step_smooth	
step_slidify_augment	
stan slidify symmet	00

Index

4 anomalize

timetk-package

timetk: Time Series Analysis in the Tidyverse

Description

The timetk package combines a collection of coercion tools for time series analysis.

Details

The timetk package has several benefits:

- 1. Visualizing Time Series
- 2. Wrangling Time Series.
- 3. Preprocessing and Feature Engineering.

To learn more about timetk, start with the documentation: https://business-science.github.io/timetk/

Author(s)

Maintainer: Matt Dancho <mdancho@business-science.io>

Authors:

• Davis Vaughan <dvaughan@business-science.io>

See Also

Useful links:

- https://github.com/business-science/timetk
- https://business-science.github.io/timetk/
- Report bugs at https://github.com/business-science/timetk/issues

anomalize

Automatic group-wise Anomaly Detection

Description

anomalize() is used to detect anomalies in time series data, either for a single time series or for multiple time series grouped by a specific column.

anomalize 5

Usage

```
anomalize(
   .data,
   .date_var,
   .value,
   .frequency = "auto",
   .trend = "auto",
   .method = "stl",
   .iqr_alpha = 0.05,
   .clean_alpha = 0.75,
   .max_anomalies = 0.2,
   .message = TRUE
)
```

Arguments

.data	A tibble or data.frame with a time-based column
.date_var	A column containing either date or date-time values
.value	A column containing numeric values
.frequency	Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend	Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().
.method	The outlier detection method. Default: "stl". Currently "stl" is the only method. "twitter" is planned.
.iqr_alpha	Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
.clean_alpha	Controls the threshold for cleaning the outliers. The default is 0.75 , which means that the anomalies will be cleaned using the $0.75 * lower or upper bound of the recomposed time series, depending on the direction of the anomaly.$
.max_anomalies	The maximum percent of anomalies permitted to be identified.
.message	A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

Details

The anomalize() method for anomaly detection that implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

6 anomalize

- 1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
- 2. .trend: Adjusts the trend window (t.window parameter from stats::stl() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The *IQR Factor* = 0.15 / alpha (hence 3X with alpha = 0.05):

- To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
- Increase alpha to make it easier to be an outlier.
- The IQR outlier detection method is used in forecast::tsoutliers().
- A similar outlier detection method is used by Twitter's AnomalyDetection package.
- Both Twitter and Forecast tsoutliers methods have been implemented in Business Science's anomalize package.

Value

A tibble or data. frame with the following columns:

- · observed: original data
- seasonal: seasonal component
- · seasadaj: seasonal adjusted
- trend: trend component
- · remainder: residual component
- anomaly: Yes/No flag for outlier detection
- anomaly score: distance from centerline
- anomaly direction: -1, 0, 1 inidicator for direction of the anomaly
- recomposed_11: lower level bound of recomposed time series
- recomposed_12: upper level bound of recomposed time series
- · observed_clean: original data with anomalies interpolated

References

- 1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol. 6, No. 1 (1990), pp. 3-73.
- 2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for Long-Term Anomaly Detection in the Cloud. Twitter Inc.

between_time 7

Examples

```
library(dplyr)
walmart_sales_weekly %>%
    filter(id %in% c("1_1", "1_3")) %>%
    group_by(id) %>%
    anomalize(Date, Weekly_Sales)
```

between_time

Between (For Time Series): Range detection for date or date-time sequences

Description

The easiest way to filter time series date or date-time vectors. Returns a logical vector indicating which date or date-time values are within a range. See filter_by_time() for the data.frame (tibble) implementation.

Usage

```
between_time(index, start_date = "start", end_date = "end")
```

Arguments

index A date or date-time vector.

start_date The starting date end_date The ending date

Details

Pure Time Series Filtering Flexibilty

The start_date and end_date parameters are designed with flexibility in mind.

Each side of the time_formula is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful shorthand is available. Some examples are:

```
• Year: start_date = '2013', end_date = '2015'
```

• Month: start_date = '2013-01', end_date = '2016-06'

• Day: start_date = '2013-01-05', end_date = '2016-06-04'

• Second: start_date = '2013-01-05 10:22:15', end_date = '2018-06-03 12:14:22'

• Variations: start_date = '2013', end_date = '2016-06'

Key Words: "start" and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end values. Here are some examples:

8 between_time

- Start of the series to end of 2015: start_date = 'start', end_date = '2015'
- Start of 2014 to end of series: start_date = '2014', end_date = 'end'

Internal Calculations

All shorthand dates are expanded:

- The start_date is expanded to be the *first date* in that period
- The end_date side is expanded to be the *last date* in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

```
• start_date = '2015' is equivalent to start_date = '2015-01-01 + 00:00:00'
```

```
• end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'
```

Value

A logical vector the same length as index indicating whether or not the timestamp value was within the start_date and end_date range.

References

• This function is based on the tibbletime::filter_time() function developed by Davis Vaughan.

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

Examples

```
library(dplyr)
index_daily <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "day")
index_min <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "min")
# How it works
# - Returns TRUE/FALSE length of index
# - Use sum() to tally the number of TRUE values</pre>
```

bike_sharing_daily 9

```
index_daily %>% between_time("start", "2016-01") %>% sum()
# ---- INDEX SLICING ----
# Daily Series: Month of January 2016
index_daily[index_daily %>% between_time("start", "2016-01")]
# Daily Series: March 1st - June 15th, 2016
index_daily[index_daily %>% between_time("2016-03", "2016-06-15")]
# Minute Series:
index_min[index_min %>% between_time("2016-02-01 12:00", "2016-02-01 13:00")]
# ---- FILTERING WITH DPLYR ----
FANG %>%
    group_by(symbol) %>%
    filter(date %>% between_time("2016-01", "2016-01"))
```

bike_sharing_daily

Daily Bike Sharing Data

Description

This dataset contains the daily count of rental bike transactions between years 2011 and 2012 in Capital bikeshare system with the corresponding weather and seasonal information.

Usage

```
bike_sharing_daily
```

Format

A tibble: 731 x 16

• instant: record index

• dteday : date

• season: season (1:winter, 2:spring, 3:summer, 4:fall)

• yr : year (0: 2011, 1:2012)

• mnth: month (1 to 12)

• hr : hour (0 to 23)

• holiday: weather day is holiday or not

• weekday: day of the week

• workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

• weathersit:

- 1: Clear, Few clouds, Partly cloudy, Partly cloudy

10 box_cox_vec

- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp: Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-8, t_max=+39 (only in hourly scale)
- atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-t_min), t_min=-16, t_max=+50 (only in hourly scale)
- hum: Normalized humidity. The values are divided to 100 (max)
- windspeed: Normalized wind speed. The values are divided to 67 (max)
- · casual: count of casual users
- · registered: count of registered users
- · cnt: count of total rental bikes including both casual and registered

References

Fanaee-T, Hadi, and Gama, Joao, 'Event labeling combining ensemble detectors and background knowledge', Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

Examples

```
bike_sharing_daily
```

box_cox_vec

Box Cox Transformation

Description

This is mainly a wrapper for the BoxCox transformation from the forecast R package. The box_cox_vec() function performs the transformation. box_cox_inv_vec() inverts the transformation. auto_lambda() helps in selecting the optimal lambda value.

Usage

```
box_cox_vec(x, lambda = "auto", silent = FALSE)
box_cox_inv_vec(x, lambda)
auto_lambda(
    x,
    method = c("guerrero", "loglik"),
    lambda_lower = -1,
    lambda_upper = 2
)
```

box_cox_vec 11

Arguments

Х	A numeric vector.
lambda	The box cox transformation parameter. If set to "auto", performs automated lambda selection using auto_lambda().
silent	Whether or not to report the automated lambda selection as a message.
method	The method used for automatic lambda selection. Either "guerrero" or "loglik".
lambda_lower	A lower limit for automatic lambda selection
lambda_upper	An upper limit for automatic lambda selection

Details

The Box Cox transformation is a power transformation that is commonly used to reduce variance of a time series.

Automatic Lambda Selection

If desired, the lambda argument can be selected using auto_lambda(), a wrapper for the Forecast R Package's forecast::BoxCox.lambda() function. Use either of 2 methods:

- 1. "guerrero" Minimizes the non-seasonal variance
- 2. "loglik" Maximizes the log-likelihood of a linear model fit to x

Value

Returns a numeric vector that has been transformed.

References

- Forecast R Package
- Forecasting: Principles & Practices: Transformations & Adjustments
- Guerrero, V.M. (1993) Time-series analysis supported by power transformations. *Journal of Forecasting*, 12, 37–48.

See Also

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), log1p() and sqrt()

12 condense_period

Examples

```
library(dplyr)
d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

# --- VECTOR ----

value_bc <- box_cox_vec(d10_daily$value)
value <- box_cox_inv_vec(value_bc, lambda = 1.25119350454964)

# --- MUTATE ----

m4_daily %>%
    dplyr::group_by(id) %>%
    dplyr::mutate(value_bc = box_cox_vec(value))
```

condense_period

Convert the Period to a Lower Periodicity (e.g. Go from Daily to Monthly)

Description

Convert a data.frame object from daily to monthly, from minute data to hourly, and more. This allows the user to easily aggregate data to a less granular level by taking the value from either the beginning or end of the period.

Usage

```
condense_period(.data, .date_var, .period = "1 day", .side = c("start", "end"))
```

Arguments

.data A tbl object or data.frame

.date_var A column containing date or date-time values. If missing, attempts to auto-

detect date column.

.period A period to condense the time series to. Time units are condensed using lubridate::floor_date()

or lubridate::ceiling_date().

The value can be:

- second
- minute
- hour
- day
- week
- month
- bimonth
- quarter

condense_period 13

- season
- halfyear
- year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed:

- "1 year"
- "2 months"
- "30 seconds"

.side

One of "start" or "end". Determines if the first observation in the period should be returned or the last.

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

Examples

```
# Libraries
library(dplyr)

# First value in each month
m4_daily %>%
    group_by(id) %>%
    condense_period(.period = "1 month")

# Last value in each month
m4_daily %>%
    group_by(id) %>%
    condense_period(.period = "1 month", .side = "end")
```

14 diff_vec

diff_vec

Differencing Transformation

Description

diff_vec() applies a Differencing Transformation. diff_inv_vec() inverts the differencing transformation.

Usage

```
diff_vec(
    x,
    lag = 1,
    difference = 1,
    log = FALSE,
    initial_values = NULL,
    silent = FALSE
)

diff_inv_vec(x, lag = 1, difference = 1, log = FALSE, initial_values = NULL)
```

Arguments

log

x A numeric vector to be differenced or inverted.

lag Which lag (how far back) to be included in the differencing calculation.

difference The number of differences to perform.

• 1 Difference is equivalent to measuring period change.

• 2 Differences is equivalent to measuring period acceleration.

If log differences should be calculated. Note that difference inversion of a log-

difference is approximate.

initial_values Only used in the diff_vec_inv() operation. A numeric vector of the initial

values, which are used to invert differences. This vector is the original values

that are the length of the NA missing differences.

silent Whether or not to report the initial values used to invert the difference as a

message.

Details

Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations.

Difference Calculation

Single differencing, $diff_{vec}(x_t)$ is equivalent to: $x_t - x_t$, where the subscript _t1 indicates the first lag. *This transformation can be interpreted as change.*

Double Differencing Calculation

diff_vec 15

Double differencing, diff_vec(x_t , difference = 2) is equivalent to: ($x_t - x_t$) - ($x_t - x_t$) - ($x_t - x_t$) - t1, where the subscript _t1 indicates the first lag. This transformation can be interpereted as acceleration.

Log Difference Calculation

```
Log differencing, diff_{vec}(x_t, log = TRUE) is equivalent to: log(x_t) - log(x_{t1}) = log(x_t / x_{t1}), where x_t is the series and x_t is the first lag.
```

The 1st difference diff_vec(difference = 1, log = TRUE) has an interesting property where diff_vec(difference = 1, log = TRUE) %>% exp() is approximately l + rate of change.

Value

A numeric vector

See Also

Advanced Differencing and Modeling:

- step_diff() Recipe for tidymodels workflow
- tk_augment_differences() Adds many differences to a data.frame (tibble)

Additional Vector Functions:

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

16 FANG

FANG

Stock prices for the "FANG" stocks.

Description

A dataset containing the daily historical stock prices for the "FANG" tech stocks, "FB", "AMZN", "NFLX", and "GOOG", spanning from the beginning of 2013 through the end of 2016.

Usage

FANG

Format

```
A "tibble" ("tidy" data frame) with 4,032 rows and 8 variables:

symbol stock ticker symbol

date trade date

open stock price at the open of trading, in USD

high stock price at the highest point during trading, in USD

low stock price at the lowest point during trading, in USD

close stock price at the close of trading, in USD

volume number of shares traded

adjusted stock price at the close of trading adjusted for stock splits, in USD
```

filter_by_time 17

filter_by_time	Filter (for Time-Series Data)	

Description

The easiest way to filter time-based **start/end ranges** using shorthand timeseries notation. See filter_period() for applying filter expression by period (windows).

Usage

```
filter_by_time(.data, .date_var, .start_date = "start", .end_date = "end")
```

Arguments

.data	A tibble with a time-based column.
.date_var	A column containing date or date-time values to filter. If missing, attempts to auto-detect date column.
.start_date	The starting date for the filter sequence
.end_date	The ending date for the filter sequence

Details

Pure Time Series Filtering Flexibilty

The .start_date and .end_date parameters are designed with flexibility in mind.

Each side of the time_formula is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful shorthand is available. Some examples are:

```
Year: .start_date = '2013', .end_date = '2015'
Month: .start_date = '2013-01', .end_date = '2016-06'
Day: .start_date = '2013-01-05', .end_date = '2016-06-04'
Second: .start_date = '2013-01-05 10:22:15', .end_date = '2018-06-03 12:14:22'
Variations: .start_date = '2013', .end_date = '2016-06'
```

Key Words: "start" and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end values. Here are some examples:

```
• Start of the series to end of 2015: .start_date = 'start', .end_date = '2015'
```

• Start of 2014 to end of series: .start_date = '2014', .end_date = 'end'

Internal Calculations

All shorthand dates are expanded:

- The . start_date is expanded to be the *first date* in that period
- The .end_date side is expanded to be the *last date* in that period

18 filter_by_time

This means that the following examples are equivalent (assuming your index is a POSIXct):

```
• .start_date = '2015' is equivalent to .start_date = '2015-01-01 + 00:00:00'
```

```
• .end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'
```

Value

Returns a tibble or data, frame that has been filtered.

References

• This function is based on the tibbletime::filter_time() function developed by Davis Vaughan.

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

Examples

```
library(dplyr)

# Filter values in January 1st through end of February, 2013
FANG %>%
    group_by(symbol) %>%
    filter_by_time(.start_date = "start", .end_date = "2013-02") %>%
    plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)
```

filter_period 19

filter_period

Apply filtering expressions inside periods (windows)

Description

Applies a dplyr **filtering expression inside a time-based period (window).** See filter_by_time() for filtering continuous ranges defined by start/end dates. filter_period() enables filtering expressions like:

- Filtering to the maximum value each month.
- Filtering the first date each month.
- Filtering all rows with value greater than a monthly average

Usage

```
filter_period(.data, ..., .date_var, .period = "1 day")
```

Arguments

.data A tbl object or data.frame

.. Filtering expression. Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to

TRUE are kept.

.date_var A column containing date or date-time values. If missing, attempts to auto-

detect date column.

.period A period to filter within. Time units are grouped using lubridate::floor_date()

 $or \ lubridate:: ceiling_date().$

The value can be:

- second
- minute
- hour
- day
- week
- month
- bimonth
- quarter
- season
- halfyear
- year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed:

- "1 year"
- "2 months"
- "30 seconds"

20 fourier_vec

Value

```
A tibble or data.frame
```

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

Examples

```
# Libraries
library(dplyr)

# Max value in each month
m4_daily %>%
    group_by(id) %>%
    filter_period(.period = "1 month", value == max(value))

# First date each month
m4_daily %>%
    group_by(id) %>%
    filter_period(.period = "1 month", date == first(date))

# All observations that are greater than a monthly average
m4_daily %>%
    group_by(id) %>%
    filter_period(.period = "1 month", value > mean(value))
```

fourier_vec

Fourier Series

Description

fourier_vec() calculates a Fourier Series from a date or date-time index.

fourier_vec 21

Usage

```
fourier_vec(x, period, K = 1, type = c("sin", "cos"), scale_factor = NULL)
```

Arguments

x A date, POSIXct, yearmon, yearqtr, or numeric sequence (scaled to difference 1

for period alignment) to be converted to a fourier series.

period The number of observations that complete one cycle.

K The fourier term order.

type Either "sin" or "cos" for the appropriate type of fourier term.

scale_factor Scale factor is a calculated value that scales date sequences to numeric se-

quences. A user can provide a different value of scale factor to override the

date scaling. Default: NULL (auto-scale).

Details

Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations.

Fourier Series Calculation

The internal calculation is relatively straightforward: fourier(x) = $\sin(2 * pi * term * x)$ or $\cos(2 * pi * term * x)$, where term = K / period.

Period Alignment, period

The period alignment with the sequence is an essential part of fourier series calculation.

- Date, Date-Time, and Zoo (yearqtr and yearmon) Sequences Are scaled to unit difference of 1. This happens internally, so there's nothing you need to do or to worry about. Future time series will be scaled appropriately.
- Numeric Sequences Are not scaled, which means you should transform them to a unit difference of 1 so that your x is a sequence that increases by 1. Otherwise your period and fourier order will be incorrectly calculated. The solution is to just take your sequence and divide by the median difference between values.

Fourier Order, K

The fourier order is a parameter that increases the frequency. K = 2 doubles the frequency. It's common in time series analysis to add multiple fourier orders (e.g. 1 through 5) to account for seasonalities that occur faster than the primary seasonality.

Type (Sin/Cos)

The type of the fourier series can be either sin or cos. It's common in time series analysis to add both sin and cos series.

Value

A numeric vector

22 fourier_vec

See Also

Fourier Modeling Functions:

- step_fourier() Recipe for tidymodels workflow
- tk_augment_fourier() Adds many fourier series to a data.frame (tibble)

Additional Vector Functions:

- Fourier Series: fourier_vec()
- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

```
library(dplyr)
# Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)
date_sequence <- tk_make_timeseries("2016-01-01", "2016-01-31", by = "hour")
# --- VECTOR ---
fourier_vec(date_sequence, period = 7 * 24, K = 1, type = "sin")
# --- MUTATE ---
tibble(date = date_sequence) %>%
   # Add cosine series that oscilates at a 7-day period
   mutate(
        C1_7 = fourier_vec(date, period = 7*24, K = 1, type = "cos"),
        C2_7 = fourier_vec(date, period = 7*24, K = 2, type = "cos")
   ) %>%
    # Visualize
   tidyr::pivot_longer(cols = contains("_"), names_to = "name", values_to = "value") %>%
    plot_time_series(
       date, value, .color_var = name,
        .smooth = FALSE,
        .interactive = FALSE,
        .title = "7-Day Fourier Terms"
    )
options(max.print = options_old)
```

future_frame 23

future_frame

Make future time series from existing

Description

Make future time series from existing

Usage

```
future_frame(
    .data,
    .date_var,
    .length_out,
    .inspect_weekdays = FALSE,
    .inspect_months = FALSE,
    .skip_values = NULL,
    .insert_values = NULL,
    .bind_data = FALSE
)
```

Arguments

. data A data frame or tibble

.date_var A date or date-time variable.

 $. length_out \qquad Number \ of \ future \ observations. \ Can \ be \ numeric \ number \ or \ a \ phrase \ like \ "1$

year".

.inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g. weekends) should be excluded from the future dates. Default is FALSE.

 $.inspect_months$

Uses a logistic regression algorithm to inspect whether certain days of months (e.g. last two weeks of year or seasonal days) should be excluded from the future

dates. Default is FALSE.

. skip_values A vector of same class as idx of timeseries values to skip.

.insert_values A vector of same class as idx of timeseries values to insert.

.bind_data Whether or not to perform a row-wise bind of the .data and the future data.

Default: FALSE

Details

This is a wrapper for tk_make_future_timeseries() that works on data.frames. It respects dplyr groups.

Specifying Length of Future Observations

The argument .length_out determines how many future index observations to compute. It can be specified as:

24 future_frame

- A numeric value the number of future observations to return.
 - The number of observations returned is *always* equal to the value the user inputs.
 - The **end date can vary** based on the number of timestamps chosen.
- A time-based phrase The duration into the future to include (e.g. "6 months" or "30 minutes").
 - The duration defines the end date for observations.
 - The **end date will not change** and those timestamps that fall within the end date will be returned (e.g. a quarterly time series will return 4 quarters if .length_out = "1 year").
 - The number of observations will vary to fit within the end date.

Weekday and Month Inspection

The .inspect_weekdays and .inspect_months arguments apply to "daily" (scale = "day") data (refer to tk_get_timeseries_summary() to get the index scale).

- The .inspect_weekdays argument is useful in determining missing days of the week that occur on a weekly frequency such as every week, every other week, and so on. It's recommended to have at least 60 days to use this option.
- The .inspect_months argument is useful in determining missing days of the month, quarter or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.

Skipping / Inserting Values

The .skip_values and .insert_values arguments can be used to remove and add values into the series of future times. The values must be the same format as the idx class.

- The .skip_values argument useful for passing holidays or special index values that should be excluded from the future time series.
- The .insert_values argument is useful for adding values back that the algorithm may have excluded.

Binding with Data

Rowwise binding with the original is so common that I've added an argument .bind_data to perform a row-wise bind of the future data and the incoming data.

This *replaces* the need to do:

```
df %>%
   future_frame(.length_out = "6 months") %>%
   bind_rows(df, .)

Now you can just do:

df %>%
   future_frame(.length_out = "6 months", .bind_data = TRUE)
```

Value

A tibble that has been extended with future date, date-time timestamps.

is_date_class 25

See Also

• Making Future Time Series: tk_make_future_timeseries() (Underlying function)

Examples

```
library(dplyr)
# 30-min interval data
taylor_30_min %>%
    future_frame(date, .length_out = "1 week")
# Daily Data (Grouped)
m4_daily %>%
    group_by(id) %>%
    future_frame(date, .length_out = "6 weeks")
# Specify how many observations to project into the future
m4_daily %>%
    group_by(id) %>%
    future_frame(date, .length_out = 100)
# Bind with Original Data
m4_daily %>%
    group_by(id) %>%
    future_frame(date, .length_out = 100, .bind_data = TRUE)
holidays <- tk_make_holiday_sequence(</pre>
    start_date = "2017-01-01",
    end_{date} = "2017-12-31",
   calendar = "NYSE")
weekends <- tk_make_weekend_sequence(</pre>
   start_date = "2017-01-01",
   end_date = "2017-12-31"
)
FANG %>%
   group_by(symbol) %>%
   future_frame(
                         = "1 year",
        .length_out
        .skip_values
                          = c(holidays, weekends)
   )
```

is_date_class

Check if an object is a date class

Description

Check if an object is a date class

26 lag_vec

Usage

```
is_date_class(x)
```

Arguments

Χ

A vector to check

Value

```
Logical (TRUE/FALSE)
```

Examples

```
library(dplyr)

tk_make_timeseries("2011") %>% is_date_class()

letters %>% is_date_class()
```

lag_vec

Lag Transformation

Description

lag_vec() applies a Lag Transformation.

Usage

```
lag_vec(x, lag = 1)
lead_vec(x, lag = -1)
```

Arguments

X

A vector to be lagged.

lag

Which lag (how far back) to be included in the differencing calculation. Negative lags are leads.

Details

Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations. The function allows both lags and leads (negative lags).

Lag Calculation

A lag is an offset of lag periods. NA values are returned for the number of lag periods.

lag_vec 27

Lead Calculation

A *negative lag* is considered a lead. The only difference between lead_vec() and lag_vec() is that the lead_vec() function contains a starting negative value.

Value

A numeric vector

See Also

Modeling and Advanced Lagging:

- recipes::step_lag() Recipe for adding lags in tidymodels modeling
- tk_augment_lags() Add many lags group-wise to a data.frame (tibble)

Vectorized Transformations:

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

```
library(dplyr)
# --- VECTOR ----
# Lag
1:10 %>% lag_vec(lag = 1)
# Lead
1:10 %>% lag_vec(lag = -1)
# --- MUTATE ----
m4_daily %>%
    group_by(id) %>%
    mutate(lag_1 = lag_vec(value, lag = 1))
```

28 log_interval_vec

log_interval_vec

Log-Interval Transformation for Constrained Interval Forecasting

Description

The log_interval_vec() transformation constrains a forecast to an interval specified by an upper_limit and a lower_limit. The transformation provides similar benefits to log() transformation, while ensuring the inverted transformation stays within an upper and lower limit.

Usage

```
log_interval_vec(
    x,
    limit_lower = "auto",
    limit_upper = "auto",
    offset = 0,
    silent = FALSE
)
log_interval_inv_vec(x, limit_lower, limit_upper, offset = 0)
```

Arguments

X	A positive numeric vector.
limit_lower	A lower limit. Must be less than the minimum value. If set to "auto", selects zero.
limit_upper	An upper limit. Must be greater than the maximum value. If set to "auto", selects a value that is 10% greater than the maximum value.
offset	An offset to include in the log transformation. Useful when the data contains values less than or equal to zero.
silent	Whether or not to report the parameter selections as a message.

Details

Log Interval Transformation

The Log Interval Transformation constrains values to specified upper and lower limits. The transformation maps limits to a function:

```
log(((x + offset) - a)/(b - (x + offset)))
```

where a is the lower limit and b is the upper limit

Inverse Transformation

The inverse transformation:

```
(b-a)*(exp(x)) / (1 + exp(x)) + a - offset
```

m4_daily 29

Value

A numeric vector of the transformed series.

References

• Forecasting: Principles & Practices: Forecasts constrained to an interval

See Also

```
• Box Cox Transformation: box_cox_vec()
```

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation & Anomaly Cleaning for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), log1p() and sqrt()

Examples

```
library(dplyr)
values_trans <- log_interval_vec(1:10, limit_lower = 0, limit_upper = 11)
values_trans
values_trans_forecast <- c(values_trans, 3.4, 4.4, 5.4)
values_trans_forecast %>%
    log_interval_inv_vec(limit_lower = 0, limit_upper = 11) %>%
    plot()
```

m4_daily

Sample of 4 Daily Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 daily time series from the competition.

Usage

```
m4_daily
```

30 m4_hourly

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Daily format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 daily data sets from the M4 competition.

Source

• M4 Competition Website

Examples

```
m4_daily
```

m4_hourly

Sample of 4 Hourly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 hourly time series from the competition.

Usage

m4_hourly

Format

A tibble: 3,060 x 3

- id Factor. Unique series identifier (4 total)
- date Date-time. Timestamp information. Hourly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 hourly data sets from the M4 competition.

Source

• M4 Competition Website

m4_monthly 31

Examples

m4_hourly

m4_monthly

Sample of 4 Monthly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 monthly time series from the competition.

Usage

m4_monthly

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Monthly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Monthly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_monthly

32 m4_weekly

m4_quarterly

Sample of 4 Quarterly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 quarterly time series from the competition.

Usage

```
m4_quarterly
```

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Quarterly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Quarterly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

```
m4_quarterly
```

m4_weekly

Sample of 4 Weekly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 weekly time series from the competition.

Usage

```
m4_weekly
```

m4_yearly 33

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Weekly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Weekly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

```
m4_weekly
```

m4_yearly

Sample of 4 Yearly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The competition included 100,000 time series datasets. This dataset includes a sample of 4 yearly time series from the competition.

Usage

m4_yearly

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- date Date. Timestamp information. Yearly format.
- value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Yearly data sets from the M4 competition.

Source

• M4 Competition Website

34 mutate_by_time

Examples

```
m4_yearly
```

mutate_by_time

Mutate (for Time Series Data)

Description

mutate_by_time() is a time-based variant of the popular dplyr::mutate() function that uses .date_var to specify a date or date-time column and .by to group the calculation by groups like "5 seconds", "week", or "3 months".

Usage

```
mutate_by_time(
   .data,
   .date_var,
   .by = "day",
   ...,
   .type = c("floor", "ceiling", "round")
)
```

Arguments

.data

A tbl object or data. frame

.date_var

A column containing date or date-time values to summarize. If missing, attempts to auto-detect date column.

.by

A time unit to summarise by. Time units are collapsed using lubridate::floor_date() or lubridate::ceiling_date().

The value can be:

- second
- minute
- hour
- day
- week
- month
- bimonth
- quarter
- season
- halfyear
- year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed.

mutate_by_time 35

... Name-value pairs. The name gives the name of the column in the output.

The value can be:

- A vector of length 1, which will be recycled to the correct length.
- A vector the same length as the current group (or the whole data frame if ungrouped).
- NULL, to remove the column.
- A data frame or tibble, to create multiple columns in the output.

.type

One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate::round_date.

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

Examples

```
# Libraries
library(dplyr)

# First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%
    group_by(id) %>%
    mutate_by_time(
        .date_var = date,
        .by = "month", # Setup for monthly aggregation
        # mutate recycles a single value
        first_value_by_month = first(value)
    )

m4_daily_first_by_month_tbl

# Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%
    tidyr::pivot_longer(value:first_value_by_month) %>%
    plot_time_series(date, value, name,
```

36 normalize_vec

```
.facet_scale = "free", .facet_ncol = 2,
.smooth = FALSE, .interactive = FALSE)
```

normalize_vec

Normalize to Range (0, 1)

Description

Normalization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.

Usage

```
normalize_vec(x, min = NULL, max = NULL, silent = FALSE)
normalize_inv_vec(x, min, max)
```

Arguments

x A numeric vector.
 min The population min value in the normalization process.
 max The population max value in the normalization process.
 silent Whether or not to report the automated min and max parameters as a message.

Details

Standardization vs Normalization

- **Standardization** refers to a transformation that reduces the range to mean 0, standard deviation 1
- Normalization refers to a transformation that reduces the min-max range: (0, 1)

Value

A numeric vector with the transformation applied.

See Also

- Normalization/Standardization: standardize_vec(), normalize_vec()
- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

pad_by_time 37

Examples

pad_by_time

Insert time series rows with regularly spaced timestamps

Description

The easiest way to fill in missing timestamps or convert to a more granular period (e.g. quarter to month). Wraps the padr::pad() function for padding tibbles.

Usage

```
pad_by_time(
   .data,
   .date_var,
   .by = "auto",
   .pad_value = NA,
   .fill_na_direction = c("none", "down", "up", "downup", "updown"),
   .start_date = NULL,
   .end_date = NULL
)
```

Arguments

.data A tibble with a time-based column.
.date_var A column containing date or date-time values to pad
.by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc, or a time expression like "5 min", or "7 days". See Details.
.pad_value Fills in padded values. Default is NA.

38 pad_by_time

.fill_na_direction

Users can provide an NA fill strategy using tidyr::fill(). Possible values:

'none', 'down', 'up', 'downup', 'updown'. Default: 'none'

.start_date Specifies the start of the padded series. If NULL it will use the lowest value of

the input variable.

.end_date Specifies the end of the padded series. If NULL it will use the highest value of

the input variable.

Details

Padding Missing Observations

The most common use case for pad_by_time() is to add rows where timestamps are missing. This could be from sales data that have missing values on weekends and holidays. Or it could be high frequency data where observations are irregularly spaced and should be reset to a regular frequency.

Going from Low to High Frequency

The second use case is going from a low frequency (e.g. day) to high frequency (e.g. hour). This is possible by supplying a higher frequency to pad_by_time().

Interval, .by

Padding can be applied in the following ways:

- .by = "auto" pad_by_time() will detect the time-stamp frequency and apply padding.
- The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
- Intervals like 5 minutes, 6 hours, 10 days are possible.

Pad Value, .pad_value

A pad value can be supplied that fills in missing numeric data. Note that this is only applied to numeric columns.

Fill NA Direction, .fill_na_directions

Uses tidyr::fill() to fill missing observations using a fill strategy.

Value

A tibble or data. frame with rows containing missing timestamps added.

References

• This function wraps the padr::pad() function developed by Edwin Thoen.

See Also

Imputation:

• ts_impute_vec() - Impute missing values for time series.

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

pad_by_time 39

- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

```
library(dplyr)
# Create a quarterly series with 1 missing value
missing_data_tbl <- tibble::tibble(</pre>
    date = tk_make_timeseries("2014-01-01", "2015-01-01", by = "quarter"),
    value = 1:5
) %>%
    slice(-4) # Lose the 4th quarter on purpose
missing_data_tbl
# Detects missing quarter, and pads the missing regularly spaced quarter with NA
missing_data_tbl %>% pad_by_time(date, .by = "quarter")
# Can specify a shorter period. This fills monthly.
missing_data_tbl %>% pad_by_time(date, .by = "month")
# Can let pad_by_time() auto-detect date and period
missing_data_tbl %>% pad_by_time()
# Can specify a .pad_value
missing_data_tbl %>% pad_by_time(date, .by = "quarter", .pad_value = 0)
# Can then impute missing values
missing_data_tbl %>%
    pad_by_time(date, .by = "quarter") %>%
    mutate(value = ts_impute_vec(value, period = 1))
# Can specify a custom .start_date and .end_date
missing_data_tbl %>%
   pad_by_time(date, .by = "quarter", .start_date = "2013", .end_date = "2015-07-01")
# Can specify a tidyr::fill() direction
missing_data_tbl %>%
   pad_by_time(date, .by = "quarter",
               .fill_na_direction = "downup",
               .start_date = "2013", .end_date = "2015-07-01")
# --- GROUPS ----
```

40 parse_date2

```
# Apply standard NA padding to groups
FANG %>%
    group_by(symbol) %>%
    pad_by_time(.by = "day")

# Apply constant pad value
FANG %>%
    group_by(symbol) %>%
    pad_by_time(.by = "day", .pad_value = 0)

# Apply filled padding to groups
FANG %>%
    group_by(symbol) %>%
    group_by(symbol) %>%
    pad_by_time(.by = "day", .fill_na_direction = "down")
```

parse_date2

Fast, flexible date and datetime parsing

Description

Significantly faster time series parsing than readr::parse_date, readr::parse_datetime, lubridate::as_date(), and lubridate::as_datetime(). Uses anytime package, which relies on Boost.Date_Time C++ library for date/datetime parsing.

Usage

```
parse_date2(x, ..., silent = FALSE)

parse_datetime2(x, tz = "UTC", tz_shift = FALSE, ..., silent = FALSE)
```

Arguments

x	A character vector
	Additional parameters passed to anytime() and anydate()
silent	If TRUE, warns the user of parsing failures.
tz	Datetime only. A timezone (see OlsenNames()).
tz_shift	Datetime only. If FALSE, forces the datetime into the time zone. If TRUE, offsets the datetime from UTC to the new time zone.

Details

Parsing Formats

• Date Formats: Must follow a Year, Month, Day sequence. (e.g. parse_date2("2011 June") is OK, parse_date2("June 2011") is NOT OK).

plot_acf_diagnostics 41

• Date Time Formats: Must follow a YMD HMS sequence.

Refer to lubridate::mdy() for Month, Day, Year and additional formats.

Time zones (Datetime)

Time zones are handled in a similar way to lubridate::as_datetime() in that time zones are forced rather than shifted. This is a key difference between anytime::anytime(), which shifts datetimes to the specified timezone by default.

Value

Returns a date or datatime vector from the transformation applied to character timestamp vector.

References

• This function wraps the anytime::anytime() and anytime::anydate() functions developed by Dirk Eddelbuettel.

Examples

```
# Fast date parsing
parse_date2("2011")
parse_date2("2011 June 3rd")

# Fast datetime parsing
parse_datetime2("2011")
parse_datetime2("2011 Jan 1 12:35:21")

# Time Zones (datetime only)
parse_datetime2("2011 Jan 1 12:35:21", tz = "Europe/London")
```

Description

Returns the ACF and PACF of a target and optionally CCF's of one or more lagged predictors in interactive plotly plots. Scales to multiple time series with group_by().

```
plot_acf_diagnostics(
    .data,
    .date_var,
    .value,
    .ccf_vars = NULL,
    .lags = 1000,
    .show_ccf_vars_only = FALSE,
```

42 plot_acf_diagnostics

```
.show_white_noise_bars = TRUE,
.facet_ncol = 1,
.facet_scales = "fixed",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_alpha = 1,
.point_color = "#2c3e50",
.point_size = 1,
.point_alpha = 1,
.x_intercept = NULL,
.x_intercept_color = "#E31A1C",
.hline_color = "#2c3e50",
.white_noise_line_type = 2,
.white_noise_line_color = "#A6CEE3",
.title = "Lag Diagnostics",
.x_{lab} = "Lag",
.y_lab = "Correlation",
.interactive = TRUE,
.plotly_slider = FALSE
```

Arguments

.data	A data frame or tibble with numeric features (values) in descending chronological order	
.date_var	A column containing either date or date-time values	
.value	A numeric column with a value to have ACF and PACF calculations performed.	
.ccf_vars	Additional features to perform Lag Cross Correlations (CCFs) versus the .value. Useful for evaluating external lagged regressors.	
.lags	A sequence of one or more lags to evaluate.	
.show_ccf_vars_	only	
	Hides the ACF and PACF plots so you can focus on only CCFs.	
.show_white_noi	se_bars	
	Shows the white noise significance bounds.	
.facet_ncol	Facets: Number of facet columns. Has no effect if using grouped_df.	
.facet_scales	Facets: Options include "fixed", "free", "free_y", "free_x"	
.line_color	Line color. Use keyword: "scale_color" to change the color by the facet.	
.line_size	Line size (linewidth)	
.line_alpha	Line opacity. Adjust the transparency of the line. Range: (0, 1)	
.point_color	Point color. Use keyword: "scale_color" to change the color by the facet.	
.point_size	Point size	
.point_alpha	Opacity. Adjust the transparency of the points. Range: (0, 1)	
.x_intercept	Numeric lag. Adds a vertical line.	
.x_intercept_color		
	Color for the x-intercept line.	

plot_acf_diagnostics 43

```
.hline_color
                  Color for the y-intercept = 0 line.
.white_noise_line_type
                  Line type for white noise bars. Set to 2 for "dashed" by default.
.white_noise_line_color
                  Line color for white noise bars. Set to tidyquant::palette_light() "steel
                  blue" by default.
.title
                  Title for the plot
.x_lab
                  X-axis label for the plot
.y_lab
                  Y-axis label for the plot
                  Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
.interactive
.plotly_slider If TRUE, returns a plotly x-axis range slider.
```

Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3+ at once? Now you can.

- ACF Autocorrelation between a target variable and lagged versions of itself
- PACF Partial Autocorrelation removes the dependence of lags on other lags highlighting key seasonalities.
- CCF Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification

Lags (.lags) can either be specified as:

- A time-based phrase indicating a duraction (e.g. 2 months)
- A maximum lag (e.g. .lags = 28)
- A sequence of lags (e.g. .lags = 7:28)

Scales to Multiple Time Series with Groups

The plot_acf_diagnostics() works with grouped_df's, meaning you can group your time series by one or more categorical columns with dplyr::group_by() and then apply plot_acf_diagnostics() to return group-wise lag diagnostics.

Special Note on Groups

Unlike other plotting utilities, the .facet_vars arguments is NOT included. Use dplyr::group_by() for processing multiple time series groups.

Calculating the White Noise Significance Bars

The formula for the significance bars is +2/sqrt(T) and -2/sqrt(T) where T is the length of the time series. For a white noise time series, 95% of the data points should fall within this range. Those that don't may be significant autocorrelations.

Value

A static ggplot2 plot or an interactive plotly plot

See Also

- $\bullet \ \ Visualizing \ ACF, PACF, \& \ CCF : \verb|plot_acf_diagnostics()| \\$
- Visualizing Seasonality: plot_seasonal_diagnostics()
- Visualizing Time Series: plot_time_series()

```
library(dplyr)
library(ggplot2)
# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%
   group_by(id) %>%
   plot_acf_diagnostics(
                                   # ACF & PACF
       date, value,
        .lags = "7 days",
                                   # 7-Days of hourly lags
        .interactive = FALSE
   )
# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%
    group_by(id) %>%
   plot_acf_diagnostics(
        date,
        diff_vec(value, lag = 1), # Difference the value column
                   = 0:(24*7),  # 7-Days of hourly lags
        .lags
        . \\ \\ interactive = FALSE
    ) +
    ggtitle("ACF Diagnostics", subtitle = "1st Difference")
# CCFs Too!
walmart_sales_weekly %>%
    select(id, Date, Weekly_Sales, Temperature, Fuel_Price) %>%
    group_by(id) %>%
   plot_acf_diagnostics(
        Date, Weekly_Sales,
                                                   # ACF & PACF
        .ccf_vars = c(Temperature, Fuel_Price), # CCFs
                     = "3 months", # 3 months of weekly lags
        .interactive = FALSE
    )
```

Description

plot_anomalies() is an interactive and scalable function for visualizing anomalies in time series data. Plots are available in interactive plotly (default) and static ggplot2 format.

plot_anomalies_decomp(): Takes in data from the anomalize() function, and returns a plot of the anomaly decomposition. Useful for interpeting how the anomalize() function is determining outliers from "remainder".

plot_anomalies_cleaned() helps users visualize the before/after of cleaning anomalies.

```
plot_anomalies(
  .data,
  .date_var,
  .facet_vars = NULL,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " "
  .facet_strip_remove = FALSE,
  .line\_color = "#2c3e50",
  .line_size = 0.5,
  .line\_type = 1,
  .line_alpha = 1,
  .anom_color = "#e31a1c",
  .anom\_alpha = 1,
  .anom\_size = 1.5,
  .ribbon_fill = "grey20",
  .ribbon_alpha = 0.2,
  .legend\_show = TRUE,
  .title = "Anomaly Plot",
  .x_{lab} = "",
  .y_{lab} = "",
  .color_lab = "Anomaly",
  .interactive = TRUE,
  .trelliscope = FALSE,
  .trelliscope_params = list()
)
plot_anomalies_decomp(
  .data,
  .date_var,
  .facet_vars = NULL,
  .facet_scales = "free",
  .line\_color = "#2c3e50",
  .line_size = 0.5,
  .line\_type = 1,
```

```
.line_alpha = 1,
  .title = "Anomaly Decomposition Plot",
  .x_{lab} = "",
  .y_lab = "",
  .interactive = TRUE
plot_anomalies_cleaned(
  .data,
  .date_var,
  .facet_vars = NULL,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " ",
  .facet_strip_remove = FALSE,
  .line_color = "#2c3e50",
  .line_size = 0.5,
  .line\_type = 1,
  .line_alpha = 1,
  .cleaned_line_color = "#e31a1c",
  .cleaned_line_size = 0.5,
  .cleaned_line_type = 1,
  .cleaned_line_alpha = 1,
  .legend\_show = TRUE,
  .title = "Anomalies Cleaned Plot",
  .x_lab = "",
  .y_{lab} = "",
  .color_lab = "Legend",
  .interactive = TRUE,
  .trelliscope = FALSE,
  .trelliscope_params = list()
```

Arguments

```
.data
                  A tibble or data. frame that has been anomalized by anomalize()
.date_var
                  A column containing either date or date-time values
                  One or more grouping columns that broken out into ggplot2 facets. These can
.facet_vars
                  be selected using tidyselect() helpers (e.g contains()).
                  Number of facet columns.
.facet_ncol
.facet_nrow
                  Number of facet rows (only used for .trelliscope = TRUE)
.facet_scales
                  Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
                  "free_x"
                  The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
.facet_dir
```

```
.facet_collapse
                  Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep
                  The separator used for collapsing facets.
.facet_strip_remove
                  Whether or not to remove the strip and text label for each facet.
.line_color
                 Line color.
.line_size
                 Line size.
.line_type
                 Line type.
.line_alpha
                 Line alpha (opacity). Range: (0, 1).
.anom_color
                 Color for the anomaly dots
                  Opacity for the anomaly dots. Range: (0, 1).
.anom_alpha
.anom_size
                  Size for the anomaly dots
.ribbon_fill
                 Fill color for the acceptable range
.ribbon_alpha
                 Fill opacity for the acceptable range. Range: (0, 1).
.legend_show
                  Toggles on/off the Legend
.title
                 Plot title.
.x_lab
                 Plot x-axis label
.y_lab
                 Plot y-axis label
.color_lab
                 Plot label for the color legend
.interactive
                 If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
                  Returns either a normal plot or a trelliscopejs plot (great for many time series)
.trelliscope
                  Must have trelliscopejs installed.
.trelliscope_params
                  Pass parameters to the trelliscopejs::facet_trelliscope() function as a
                  list(). The only parameters that cannot be passed are:
                    • ncol: use .facet_ncol
                    • nrow: use .facet_nrow
                    • scales: use facet_scales
                    • as_plotly: use .interactive
.cleaned_line_color
                 Line color.
.cleaned_line_size
                 Line size.
.cleaned_line_type
                  Line type.
.cleaned_line_alpha
                 Line alpha (opacity). Range: (0, 1).
```

Value

A plotly or ggplot2 visualization

Examples

```
# Plot Anomalies
library(dplyr)
walmart_sales_weekly %>%
    filter(id %in% c("1_1", "1_3")) %>%
   group_by(id) %>%
   anomalize(Date, Weekly_Sales) %>%
   plot_anomalies(Date, .facet_ncol = 2, .ribbon_alpha = 0.25, .interactive = FALSE)
# Plot Anomalies Decomposition
library(dplyr)
walmart_sales_weekly %>%
    filter(id %in% c("1_1", "1_3")) %>%
    group_by(id) %>%
    anomalize(Date, Weekly_Sales, .message = FALSE) %>%
   plot_anomalies_decomp(Date, .interactive = FALSE)
# Plot Anomalies Cleaned
library(dplyr)
walmart_sales_weekly %>%
    filter(id %in% c("1_1", "1_3")) %>%
    group_by(id) %>%
   anomalize(Date, Weekly_Sales, .message = FALSE) %>%
   plot_anomalies_cleaned(Date, .facet_ncol = 2, .interactive = FALSE)
```

plot_anomaly_diagnostics

Visualize Anomalies for One or More Time Series

Description

An interactive and scalable function for visualizing anomalies in time series data. Plots are available in interactive plotly (default) and static ggplot2 format.

```
plot_anomaly_diagnostics(
   .data,
   .date_var,
   .value,
   .facet_vars = NULL,
   .frequency = "auto",
   .trend = "auto",
   .alpha = 0.05,
   .max_anomalies = 0.2,
```

```
.message = TRUE,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " ",
  .facet_strip_remove = FALSE,
  .line\_color = "#2c3e50",
  .line_size = 0.5,
  .line\_type = 1,
  .line_alpha = 1,
  .anom_color = "#e31a1c",
  .anom_alpha = 1,
  .anom_size = 1.5,
  .ribbon_fill = "grey20",
  .ribbon_alpha = 0.2,
  .legend_show = TRUE,
  .title = "Anomaly Diagnostics",
  .x_{lab} = "",
  .y_lab = "",
  .color_lab = "Anomaly",
  .interactive = TRUE,
  .trelliscope = FALSE,
  .trelliscope_params = list()
)
```

Arguments

.data

.date_var	A column containing either date or date-time values
.value	A column containing numeric values
.facet_vars	One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
.frequency	Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend	Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().
.alpha	Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
.max_anomalies	The maximum percent of anomalies permitted to be identified.
.message	A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).
.facet_ncol	Number of facet columns.

A tibble or data. frame with a time-based column

```
Number of facet rows (only used for .trelliscope = TRUE)
.facet_nrow
                  Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
.facet_scales
                  "free_x"
.facet_dir
                  The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".
.facet_collapse
                  Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep
                  The separator used for collapsing facets.
.facet_strip_remove
                  Whether or not to remove the strip and text label for each facet.
.line_color
                  Line color.
.line size
                  Line size.
.line_type
                  Line type.
.line_alpha
                  Line alpha (opacity). Range: (0, 1).
.anom_color
                  Color for the anomaly dots
.anom_alpha
                  Opacity for the anomaly dots. Range: (0, 1).
.anom_size
                  Size for the anomaly dots
                  Fill color for the acceptable range
.ribbon_fill
.ribbon_alpha
                  Fill opacity for the acceptable range. Range: (0, 1).
.legend_show
                  Toggles on/off the Legend
.title
                  Plot title.
                  Plot x-axis label
.x lab
.y_lab
                  Plot y-axis label
.color_lab
                  Plot label for the color legend
.interactive
                  If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
.trelliscope
                  Returns either a normal plot or a trelliscopejs plot (great for many time series)
                  Must have trelliscopejs installed.
.trelliscope_params
                  Pass parameters to the trelliscopejs::facet_trelliscope() function as a
                  list(). The only parameters that cannot be passed are:
                    • ncol: use .facet_ncol
                    • nrow: use .facet_nrow
                    • scales: use facet_scales
                    • as_plotly: use .interactive
```

Details

The plot_anomaly_diagnostics() is a visualization wrapper for tk_anomaly_diagnostics() group-wise anomaly detection, implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

- 1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
- 2. .trend: Adjusts the trend window (t.window parameter from stats::st1() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The *IQR Factor* = 0.15 / alpha (hence 3X with alpha = 0.05):

- To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
- Increase alpha to make it easier to be an outlier.
- The IQR outlier detection method is used in forecast::tsoutliers().
- A similar outlier detection method is used by Twitter's AnomalyDetection package.
- Both Twitter and Forecast tsoutliers methods have been implemented in Business Science's anomalize package.

Value

A plotly or ggplot2 visualization

References

- 1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol. 6, No. 1 (1990), pp. 3-73.
- 2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

• tk_anomaly_diagnostics(): Group-wise anomaly detection

Examples

```
library(dplyr)
walmart_sales_weekly %>%
   group_by(id) %>%
   plot_anomaly_diagnostics(Date, Weekly_Sales,
                             .message = FALSE,
                             .facet_ncol = 3,
                              .ribbon_alpha = 0.25,
                              .interactive = FALSE)
```

```
plot_seasonal_diagnostics
```

Visualize Multiple Seasonality Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series seasonality. Plots are available in interactive plotly (default) and static ggplot2 format.

Usage

```
plot_seasonal_diagnostics(
  .data,
  .date_var,
  .value,
  .facet_vars = NULL,
  .feature_set = "auto",
  .geom = c("boxplot", "violin"),
  .geom\_color = "#2c3e50",
  .geom_outlier_color = "#2c3e50";
  .title = "Seasonal Diagnostics",
  .x_{lab} = "",
  .y_{lab} = "",
  .interactive = TRUE
)
```

Arguments

.data A tibble or data. frame with a time-based column .date_var A column containing either date or date-time values .value A column containing numeric values

One or more grouping columns that broken out into ggplot2 facets. These can .facet_vars be selected using tidyselect() helpers (e.g contains()).

. feature_set One or multiple selections to analyze for seasonality. Choices include:

- "auto" Automatically selects features based on the time stamps and length of the series.
- "second" Good for analyzing seasonality by second of each minute.
- "minute" Good for analyzing seasonality by minute of the hour
- "hour" Good for analyzing seasonality by hour of the day
- "wday.lbl" Labeled weekdays. Good for analyzing seasonality by day of the week.
- "week" Good for analyzing seasonality by week of the year.
- "month.lbl" Labeled months. Good for analyzing seasonality by month of the year.
- "quarter" Good for analyzing seasonality by quarter of the year
- "year" Good for analyzing seasonality over multiple years.
- . geom Either "boxplot" or "violin"
- . geom_color Geometry color. Line color. Use keyword: "scale_color" to change the color by the facet.
- .geom_outlier_color

Color used to highlight outliers.

.title Plot title.

.x_lab.y_labPlot x-axis label.y_axis label

. interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2 plot.

Details

Automatic Feature Selection

Internal calculations are performed to detect a sub-range of features to include useing the following logic:

- The *minimum* feature is selected based on the median difference between consecutive timestamps
- The *maximum* feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features: "hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames

This function respects grouped data. frame and tibbles that were made with dplyr::group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the sub-groups. This means extra features are returned even though they may be meaningless for some of the groups.

Transformations

The .value parameter respects transformations (e.g. .value = log(sales)).

54 plot_stl_diagnostics

Value

A plotly or ggplot2 visualization

Examples

```
library(dplyr)
# ---- MULTIPLE FREQUENCY ----
# Taylor 30-minute dataset from forecast package
taylor_30_min
# Visualize series
taylor_30_min %>%
   plot_time_series(date, value, .interactive = FALSE)
# Visualize seasonality
taylor_30_min %>%
    plot_seasonal_diagnostics(date, value, .interactive = FALSE)
# ---- GROUPED EXAMPLES ----
# m4 hourly dataset
m4_hourly
# Visualize series
m4_hourly %>%
   group_by(id) %>%
   plot_time_series(date, value, .facet_scales = "free", .interactive = FALSE)
# Visualize seasonality
m4_hourly %>%
    group_by(id) %>%
   plot_seasonal_diagnostics(date, value, .interactive = FALSE)
```

Description

An interactive and scalable function for visualizing time series STL Decomposition. Plots are available in interactive plotly (default) and static ggplot2 format.

```
plot_stl_diagnostics(
   .data,
   .date_var,
```

plot_stl_diagnostics 55

```
.value,
.facet_vars = NULL,
.feature_set = c("observed", "season", "trend", "remainder", "seasadj"),
.frequency = "auto",
.trend = "auto",
.message = TRUE,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.title = "STL Diagnostics",
.x_lab = "",
.y_lab = "",
.interactive = TRUE
```

Arguments

.data	A tibble or data.frame with a time-based column
.date_var	A column containing either date or date-time values
.value	A column containing numeric values
.facet_vars	One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()).
.feature_set	The STL decompositions to visualize. Select one or more of "observed", "season", "trend", "remainder", "seasadj".
.frequency	Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend	Controls the trend component. For STL, trend controls the sensitivity of the lowess smoother, which is used to remove the remainder.
.message	A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).
.facet_scales	Control facet x & y-axis ranges. Options include "fixed", "free_y", "free_x"
.line_color	Line color.
.line_size	Line size.
.line_type	Line type.
.line_alpha	Line alpha (opacity). Range: (0, 1).
.title	Plot title.
.x_lab	Plot x-axis label
.y_lab	Plot y-axis label
.interactive	If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2

plot.

56 plot_stl_diagnostics

Details

The plot_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The function is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl(). The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder".

Frequency & Trend Selection

The user can control two parameters: .frequency and .trend.

- 1. The .frequency parameter adjusts the "season" component that is removed from the "observed" values.
- 2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is used

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based on the scale of the time series.

Value

A plotly or ggplot2 visualization

```
library(dplyr)
# ---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%
   filter(id == "H10") %>%
   plot_stl_diagnostics(
        date, value,
        # Set features to return, desired frequency and trend
        .feature_set = c("observed", "season", "trend", "remainder"),
        .frequency = "24 hours",
                    = "1 week",
        .trend
        .interactive = FALSE)
# ---- GROUPS ----
m4_hourly %>%
   group_by(id) %>%
   plot_stl_diagnostics(
        date, value,
        .feature_set = c("observed", "season", "trend"),
        .interactive = FALSE)
```

plot_time_series

Interactive Plotting for One or More Time Series

Description

A workhorse time-series plotting function that generates interactive plotly plots, consolidates 20+ lines of ggplot2 code, and scales well to many time series.

```
plot_time_series(
  .data,
  .date_var,
  .value,
  .color_var = NULL,
  .facet_vars = NULL,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free_y",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " ",
  .facet_strip_remove = FALSE,
  .line_color = "#2c3e50",
  .line_size = 0.5,
  .line\_type = 1,
  .line_alpha = 1,
  .y_intercept = NULL,
  .y_intercept_color = "#2c3e50",
  .x_intercept = NULL,
  .x_intercept_color = "#2c3e50",
  .smooth = TRUE,
  .smooth_period = "auto",
  .smooth_message = FALSE,
  .smooth_span = NULL,
  .smooth_degree = 2,
  .smooth_color = "#3366FF",
  .smooth\_size = 1,
  .smooth\_alpha = 1,
  .legend\_show = TRUE,
  .title = "Time Series Plot",
  .x_lab = "",
  .y_lab = "",
  .color_lab = "Legend",
  .interactive = TRUE,
  .plotly_slider = FALSE,
  .trelliscope = FALSE,
```

```
.trelliscope_params = list()
)
```

Arguments

.smooth_span

.data A tibble or data. frame with a time-based column A column containing either date or date-time values .date_var A column containing numeric values .value .color_var A categorical column that can be used to change the line color .facet_vars One or more grouping columns that broken out into ggplot2 facets. These can be selected using tidyselect() helpers (e.g contains()). .facet_ncol Number of facet columns. Number of facet rows (only used for .trelliscope = TRUE) .facet_nrow .facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x" The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h". .facet_dir $.facet_collapse$ Multiple facets included on one facet strip instead of multiple facet strips. .facet_collapse_sep The separator used for collapsing facets. .facet_strip_remove Whether or not to remove the strip and text label for each facet. .line_color Line color. Overrided if .color_var is specified. .line_size Line size. .line_type Line type. .line_alpha Line alpha (opacity). Range: (0, 1). Value for a y-intercept on the plot .y_intercept .y_intercept_color Color for the y-intercept .x_intercept Value for a x-intercept on the plot .x_intercept_color Color for the x-intercept Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() .smooth to apply a LOESS smoother. .smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by default, which uses tk_get_trend() to determine a logical trend cycle. .smooth_message

Logical. Whether or not to return the trend selected as a message. Useful for

Percentage of observations to include in the Loess Smoother. You can use either

those that want to see what .smooth_period was selected.

period or span. See smooth_vec().

.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more flexible). Smoother line color .smooth_color Smoother line size .smooth size .smooth_alpha Smoother alpha (opacity). Range: (0, 1). .legend_show Toggles on/off the Legend .title Title for the plot .x_lab X-axis label for the plot .y_lab Y-axis label for the plot .color_lab Legend label if a color_var is used. .interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visualization .plotly_slider If TRUE, returns a plotly date range slider. .trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series) Must have trelliscopejs installed. .trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:

ncol: use .facet_ncol
nrow: use .facet_nrow
scales: use facet_scales
as_plotly: use .interactive

Details

plot_time_series() is a scalable function that works with both *ungrouped* and *grouped* data. frame objects (and tibbles!).

Interactive by Default

plot_time_series() is built for exploration using:

- Interactive Plots: plotly (default) Great for exploring!
- Static Plots: ggplot2 (set .interactive = FALSE) Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

plot_time_series() returns multiple time series plots using ggplot2 facets:

- group_by() If groups are detected, multiple facets are returned
- plot_time_series(.facet_vars) You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to take the log of sales you can use a call like plot_time_series(date, log(sales)) and the log transformation will be applied.

Smoother Period / Span Calculation

The . smooth = TRUE option returns a smoother that is calculated based on either:

- 1. A . smooth_period: Number of observations
- 2. A . smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observertions. This is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value (e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

```
library(dplyr)
library(lubridate)
# Works with individual time series
FANG %>%
   filter(symbol == "FB") %>%
   plot_time_series(date, adjusted, .interactive = FALSE)
# Works with groups
FANG %>%
   group_by(symbol) %>%
   plot_time_series(date, adjusted,
                    .facet_ncol = 2,
                                          # 2-column layout
                    .interactive = FALSE)
# Can also group inside & use .color_var
FANG %>%
   mutate(year = year(date)) %>%
   plot_time_series(date, adjusted,
                    .facet_vars = c(symbol, year), # add groups/facets
                    .color_var
                                  = year,
                                               # color by year
                    .facet_ncol = 4,
                    .facet_scales = "free",
                    .facet_collapse = TRUE, # combine group strip text into 1 line
                    .interactive = FALSE)
# Can apply transformations to .value or .color_var
# - .value = log(adjusted)
# - .color_var = year(date)
FANG %>%
   plot_time_series(date, log(adjusted),
                    .color_var = year(date),
                    .facet_vars = contains("symbol"),
```

```
.facet_ncol = 2,
.facet_scales = "free",
.y_lab = "Log Scale",
.interactive = FALSE)
```

```
plot_time_series_boxplot
```

Interactive Time Series Box Plots

Description

A boxplot function that generates interactive plotly plots for time series.

```
plot_time_series_boxplot(
  .data,
  .date_var,
  .value,
  .period,
  .color_var = NULL,
  .facet_vars = NULL,
  .facet_ncol = 1,
  .facet_nrow = 1,
  .facet_scales = "free_y",
  .facet_dir = "h",
  .facet_collapse = FALSE,
  .facet_collapse_sep = " ";
  .facet_strip_remove = FALSE,
  .line_color = "#2c3e50",
  .line_size = 0.5,
  .line_type = 1,
  .line_alpha = 1,
  .y_intercept = NULL,
  .y_intercept_color = "#2c3e50",
  .smooth = TRUE,
  .smooth_func = ~mean(.x, na.rm = TRUE),
  .smooth_period = "auto",
  .smooth\_message = FALSE,
  .smooth_span = NULL,
  .smooth_degree = 2,
  .smooth_color = "#3366FF",
  .smooth_size = 1,
  .smooth\_alpha = 1,
  .legend\_show = TRUE,
```

```
.title = "Time Series Plot",
  .x_{lab} = ""
  .y_{lab} = "",
  .color_lab = "Legend",
  .interactive = TRUE,
  .plotly_slider = FALSE,
  .trelliscope = FALSE,
  .trelliscope_params = list()
)
```

Arguments

A tibble or data. frame with a time-based column .data A column containing either date or date-time values .date_var A column containing numeric values .value .period A time series unit of aggregation for the boxplot. Examples include: • "1 week" • "3 years" • "30 minutes" .color_var A categorical column that can be used to change the line color One or more grouping columns that broken out into ggplot2 facets. These can .facet_vars be selected using tidyselect() helpers (e.g contains()). Number of facet columns. .facet_ncol Number of facet rows (only used for .trelliscope = TRUE) .facet_nrow Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", .facet_scales "free x" .facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h". .facet_collapse Multiple facets included on one facet strip instead of multiple facet strips. .facet_collapse_sep The separator used for collapsing facets. .facet_strip_remove Whether or not to remove the strip and text label for each facet. Line color. Overrided if .color_var is specified. .line_color Line size. .line_size .line_type Line type. .line_alpha Line alpha (opacity). Range: (0, 1). .y_intercept Value for a y-intercept on the plot .y_intercept_color Color for the y-intercept .smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() to apply a LOESS smoother.

.smooth_func

Defines how to aggregate the .value to show the smoothed trendline. The default is ~ mean(.x, na.rm = TRUE), which uses lambda function to ensure NA values are removed. Possible values are:

- A function, e.g. mean.
- A purrr-style lambda, e.g. ~ mean(.x, na.rm = TRUE)
- .smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by default, which uses tk_get_trend() to determine a logical trend cycle.
- .smooth_message

Logical. Whether or not to return the trend selected as a message. Useful for those that want to see what .smooth_period was selected.

. smooth_span Percentage of observations to include in the Loess Smoother. You can use either period or span. See smooth_vec().

.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more flexible).

.smooth_color Smoother line color .smooth_size Smoother line size

. smooth_alpha Smoother alpha (opacity). Range: (0, 1).

.legend_show Toggles on/off the Legend

.title Title for the plot

.x_lab.y_labX-axis label for the plotY-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visualization

.plotly_slider If TRUE, returns a plotly date range slider.

. trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)

Must have trelliscopejs installed.

.trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a list(). The only parameters that cannot be passed are:

ncol: use .facet_ncolnrow: use .facet_nrowscales: use facet_scalesas_plotly: use .interactive

Details

plot_time_series_boxplot() is a scalable function that works with both *ungrouped* and *grouped* data.frame objects (and tibbles!).

Interactive by Default

plot_time_series_boxplot() is built for exploration using:

• Interactive Plots: plotly (default) - Great for exploring!

• Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

plot_time_series_boxplot() returns multiple time series plots using ggplot2 facets:

- group_by() If groups are detected, multiple facets are returned
- plot_time_series_boxplot(.facet_vars) You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to take the log of sales you can use a call like plot_time_series_boxplot(date, log(sales)) and the log transformation will be applied.

Smoother Period / Span Calculation

The .smooth = TRUE option returns a smoother that is calculated based on either:

- 1. A .smooth_func: The method of aggregation. Usually an aggregation like mean is used. The purrr-style function syntax can be used to apply complex functions.
- 2. A . smooth_period: Number of observations
- 3. A . smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observertions. This is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value (e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

```
library(dplyr)
library(lubridate)

# Works with individual time series
FANG %>%
    filter(symbol == "FB") %>%
    plot_time_series_boxplot(
        date, adjusted,
        .period = "3 month",
        .interactive = FALSE)

# Works with groups
FANG %>%
    group_by(symbol) %>%
    plot_time_series_boxplot(
        date, adjusted,
```

```
.period = "3 months",
        .facet_ncol = 2,  # 2-column layout
        .interactive = FALSE)
# Can also group inside & use .color_var
FANG %>%
   mutate(year = year(date)) %>%
   plot_time_series_boxplot(
       date, adjusted,
        .period = "3 months",
        .facet_vars = c(symbol, year), # add groups/facets
        .color_var = year, # color by year
        .facet_ncol = 4,
        .facet_scales = "free",
        .interactive = FALSE)
# Can apply transformations to .value or .color_var
# - .value = log(adjusted)
# - .color_var = year(date)
FANG %>%
   plot_time_series_boxplot(
       date, log(adjusted),
        .period = "3 months",
        .color_var = year(date),
        .facet_vars = contains("symbol"),
.facet_ncol = 2,
        .facet_scales = "free",
        .y_lab = "Log Scale",
        .interactive = FALSE)
# Can adjust the smoother
FANG %>%
   group_by(symbol) %>%
   plot_time_series_boxplot(
       date, adjusted,
                        = "3 months",
        .period
                       = TRUE,
        .smooth
        .smooth_func = median,
                                    # Smoother function
        .smooth_period = "5 years", # Smoother Period
       .facet_ncol = 2,
.interactive = FALSE)
```

Description

The plot_time_series_cv_plan() function provides a visualization for a time series resample specification (rset) of either rolling_origin or time_series_cv class.

Usage

```
plot_time_series_cv_plan(
    .data,
    .date_var,
    .value,
    ...,
    .smooth = FALSE,
    .title = "Time Series Cross Validation Plan"
)
```

Arguments

.data	A time series resample specification of of either rolling_origin or time_series_cv class or a data frame (tibble) that has been prepared using tk_time_series_cv_plan().
.date_var	A column containing either date or date-time values
.value	A column containing numeric values
	Additional parameters passed to plot_time_series()
.smooth	Logical - Whether or not to include a trendline smoother. Uses See smooth_vec() to apply a LOESS smoother.
.title	Title for the plot

Details

Resample Set

A resample set is an output of the timetk::time_series_cv() function or the rsample::rolling_origin() function.

Value

Returns a static ggplot or interactive plotly object depending on whether or not .interactive is FALSE or TRUE, respectively.

See Also

- time_series_cv() and rsample::rolling_origin() Functions used to create time series resample specifications.
- plot_time_series_cv_plan() The plotting function used for visualizing the time series resample plan.

Examples

```
library(dplyr)
library(rsample)
FB tbl <- FANG %>%
    filter(symbol == "FB") %>%
   select(symbol, date, adjusted)
resample_spec <- time_series_cv(</pre>
   FB_tbl,
    initial = "1 year",
   assess = "6 weeks",
   skip = "3 months",
           = "1 month",
   cumulative = FALSE,
   slice_limit = 6
)
resample_spec %>% tk_time_series_cv_plan()
resample_spec %>%
    tk_time_series_cv_plan() %>%
    plot_time_series_cv_plan(
        date, adjusted, # date variable and value variable
        # Additional arguments passed to plot_time_series(),
        .facet_ncol = 2,
        .line_alpha = 0.5,
        .interactive = FALSE
    )
```

plot_time_series_regression

Visualize a Time Series Linear Regression Formula

Description

A wrapper for stats::lm() that overlays a linear regression fitted model over a time series, which can help show the effect of feature engineering

```
plot_time_series_regression(
   .data,
   .date_var,
   .formula,
   .show_summary = FALSE,
   ...
)
```

Arguments

.data	A tibble or data. frame with a time-based column
.date_var	A column containing either date or date-time values
.formula	A linear regression formula. The left-hand side of the formula is used as the y-axis value. The right-hand side of the formula is used to develop the linear regression model. See stats::lm() for details.
.show_summary	If TRUE, prints the summary.lm().
	Additional arguments passed to plot_time_series()

Details

plot_time_series_regression() is a scalable function that works with both *ungrouped* and *grouped* data.frame objects (and tibbles!).

Time Series Formula

The .formula uses stats::lm() to apply a linear regression, which is used to visualize the effect of feature engineering on a time series.

- The left-hand side of the formula is used as the y-axis value.
- The right-hand side of the formula is used to develop the linear regression model.

Interactive by Default

plot_time_series_regression() is built for exploration using:

- Interactive Plots: plotly (default) Great for exploring!
- Static Plots: ggplot2 (set .interactive = FALSE) Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups

plot_time_series_regression() returns multiple time series plots using ggplot2 facets:

- group_by() If groups are detected, multiple facets are returned
- plot_time_series_regression(.facet_vars) You can manually supply facets as well.

Value

A static ggplot2 plot or an interactive plotly plot

```
.formula
                     = log(value) ~ as.numeric(date) + month(date, label = TRUE),
        .show_summary = TRUE,
        .facet_ncol = 2,
        .interactive = FALSE
   )
# ---- GROUPED SERIES ----
m4_monthly %>%
   group_by(id) %>%
   plot_time_series_regression(
        .date_var
                   = date,
                    = log(value) ~ as.numeric(date) + month(date, label = TRUE),
        .formula
        .facet_ncol = 2,
        .interactive = FALSE
   )
```

```
set_tk_time_scale_template
```

Get and modify the Time Scale Template

Description

Get and modify the Time Scale Template

Usage

```
set_tk_time_scale_template(.data)
get_tk_time_scale_template()
tk_time_scale_template()
```

Arguments

.data

A tibble with a "time_scale", "frequency", and "trend" columns.

Details

Used to get and set the time scale template, which is used by tk_get_frequency() and tk_get_trend() when period = "auto".

The predefined template is stored in a function tk_time_scale_template(). This is the default used by timetk.

Changing the Default Template

- You can access the current template with get_tk_time_scale_template().
- You can modify the current template with set_tk_time_scale_template().

70 slice_period

Value

- get_tk_time_scale_template(): Returns tibble containing the time scale template information.
- set_tk_time_scale_template(): Returns nothing.

See Also

• Automated Frequency and Trend Calculation: tk_get_frequency(), tk_get_trend()

Examples

```
get_tk_time_scale_template()
set_tk_time_scale_template(tk_time_scale_template())
```

slice_period

Apply slice inside periods (windows)

Description

Applies a dplyr slice inside a time-based period (window).

Usage

```
slice_period(.data, ..., .date_var, .period = "1 day")
```

Arguments

.data A tbl object or data.frame

... For slice(): <data-masking> Integer row values.

Provide either positive values to keep, or negative values to drop. The values provided must be either all positive or all negative. Indices beyond the number of rows in the input are silently ignored.

For slice_*(), these arguments are passed on to methods.

.date_var A column containing date or date-time values. If missing, attempts to auto-

detect date column.

.period A period to slice within. Time units are grouped using lubridate::floor_date()

or lubridate::ceiling_date().

The value can be:

- second
- minute
- hour
- day
- week

slice_period 71

- month
- bimonth
- quarter
- season
- halfyear
- year

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed:

- "1 year"
- "2 months"
- "30 seconds"

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- slice_period() Apply slice inside periods (windows)
- condense_period() Convert to a different periodicity
- between_time() Range detection for date or date-time sequences.
- slidify() Turn any function into a sliding (rolling) function

```
# Libraries
library(dplyr)

# First 5 observations in each month
m4_daily %>%
    group_by(id) %>%
    slice_period(1:5, .period = "1 month")

# Last observation in each month
m4_daily %>%
    group_by(id) %>%
    slice_period(n(), .period = "1 month")
```

72 slidify

slidify

Create a rolling (sliding) version of any function

Description

slidify returns a rolling (sliding) version of the input function, with a rolling (sliding) .period specified by the user.

Usage

```
slidify(
   .f,
   .period = 1,
   .align = c("center", "left", "right"),
   .partial = FALSE,
   .unlist = TRUE
)
```

Arguments

. f

A function, formula, or vector (not necessarily atomic).

If a **function**, it is used as is.

If a **formula**, e.g. \sim . x + 2, it is converted to a function. There are three ways to refer to the arguments:

- For a single argument function, use .
- For a two argument function, use .x and .y
- For more arguments, use ...1, ...2, ...3 etc

This syntax allows you to create very compact anonymous functions. Note that formula functions conceptually take dots (that's why you can use . . 1 etc). They silently ignore additional arguments that are not used in the formula expression.

If **character vector**, **numeric vector**, or **list**, it is converted to an extractor function. Character vectors index by name and numeric vectors index by position; use a list to index by position and name at different levels. If a component is not present, the value of .default will be returned.

.period

The period size to roll over

.align

One of "center", "left" or "right".

.partial

Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA's.

.unlist

If the function returns a single value each time it is called, use .unlist = TRUE. If the function returns more than one value, or a more complicated object (like a linear model), use .unlist = FALSE to create a list-column of the rolling results.

slidify 73

Details

The slidify() function is almost identical to tibbletime::rollify() with 3 improvements:

- 1. Alignment ("center", "left", "right")
- 2. Partial windows are allowed
- 3. Uses slider under the hood, which improves speed and reliability by implementing code at C++ level

Make any function a Sliding (Rolling) Function

slidify() turns a function into a sliding version of itself for use inside of a call to dplyr::mutate(), however it works equally as well when called from purrr::map().

Because of it's intended use with dplyr::mutate(), slidify creates a function that always returns output with the same length of the input

Alignment

Rolling / Sliding functions generate .period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- **center** (**default**): NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common in Time Series applications (e.g. denoising).
- left: NA or .partial values are added to the end to shift the series to the Left.
- **right:** NA or .partial values are added to the beginning to shift the series to the Right. This is common in Financial Applications (e.g moving average cross-overs).

Allowing Partial Windows

A key improvement over tibbletime::slidify() is that timetk::slidify() implements .partial rolling windows. Just set .partial = TRUE.

Value

A function with the rolling/sliding conversion applied.

References

• The Tibbletime R Package by Davis Vaughan, which includes the original rollify() Function

See Also

Transformation Functions:

 slidify_vec() - A simple vectorized function for applying summary functions to rolling windows.

Augmentation Functions (Add Rolling Multiple Columns):

• tk_augment_slidify() - For easily adding multiple rolling windows to you data

Slider R Package:

• slider::pslide() - The workhorse function that powers timetk::slidify()

74 slidify

Examples

```
library(dplyr)
FB <- FANG %>% dplyr::filter(symbol == "FB")
# --- ROLLING MEAN (SINGLE ARG EXAMPLE) ---
# Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period = 5, .align = "right")</pre>
FB %>%
    mutate(rolling_mean_5 = mean_roll_5(adjusted))
# Use `partial = TRUE` to allow partial windows (those with less than the full .period)
mean_roll_5_partial <- slidify(mean, .period = 5, .align = "right", .partial = TRUE)</pre>
FB %>%
    mutate(rolling_mean_5 = mean_roll_5_partial(adjusted))
# There's nothing stopping you from combining multiple rolling functions with
# different .period sizes in the same mutate call
mean_roll_10 <- slidify(mean, .period = 10, .align = "right")</pre>
FB %>%
   select(symbol, date, adjusted) %>%
        rolling_mean_5 = mean_roll_5(adjusted),
        rolling_mean_10 = mean_roll_10(adjusted)
   )
# For summary operations like rolling means, we can accomplish large-scale
# multi-rolls with tk_augment_slidify()
FB %>%
    select(symbol, date, adjusted) %>%
    tk_augment_slidify(
        adjusted, .period = 5:10, .f = mean, .align = "right",
        .names = stringr::str_c("MA_", 5:10)
    )
# --- GROUPS AND ROLLING ----
# One of the most powerful things about this is that it works with
# groups since `mutate` is being used
mean_roll_3 <- slidify(mean, .period = 3, .align = "right")</pre>
FANG %>%
   group_by(symbol) %>%
   mutate(mean_roll = mean_roll_3(adjusted)) %>%
```

slidify 75

```
slice(1:5)
# --- ROLLING CORRELATION (MULTIPLE ARG EXAMPLE) ---
# With 2 args, use the purrr syntax of \sim and .x, .y
# Rolling correlation example
cor_roll <- slidify(~cor(.x, .y), .period = 5, .align = "right")</pre>
FB %>%
    mutate(running_cor = cor_roll(adjusted, open))
# With >2 args, create an anonymous function with >2 args or use
# the purrr convention of ..1, ..2, ..3 to refer to the arguments
avg_of_avgs <- slidify(</pre>
    function(x, y, z) (mean(x) + mean(y) + mean(z)) / 3,
    .period = 10,
    .align = "right"
)
# Or
avg_of_avgs <- slidify(</pre>
    ^{\sim}(mean(..1) + mean(..2) + mean(..3)) / 3,
    .period = 10,
    .align = "right"
)
FB %>%
    mutate(avg_of_avgs = avg_of_avgs(open, high, low))
\# Optional arguments MUST be passed at the creation of the rolling function
# Only data arguments that are "rolled over" are allowed when calling the
# rolling version of the function
FB$adjusted[1] <- NA
roll_mean_na_rm <- slidify(~mean(.x, na.rm = TRUE), .period = 5, .align = "right")</pre>
FB %>%
    mutate(roll_mean = roll_mean_na_rm(adjusted))
# --- ROLLING REGRESSIONS ----
# Rolling regressions are easy to implement using `.unlist = FALSE`
lm_roll \leftarrow slidify(\sim lm(.x \sim .y), .period = 90, .unlist = FALSE, .align = "right")
FB %>%
    tidyr::drop_na() %>%
    mutate(numeric_date = as.numeric(date)) %>%
    mutate(rolling_lm = lm_roll(adjusted, numeric_date)) %>%
    filter(!is.na(rolling_lm))
```

76 slidify_vec

slidify_vec

Rolling Window Transformation

Description

slidify_vec() applies a *summary function* to a rolling sequence of windows.

Usage

```
slidify_vec(
    .x,
    .f,
    ...,
    .period = 1,
    .align = c("center", "left", "right"),
    .partial = FALSE
)
```

Arguments

. x A vector to have a rolling window transformation applied.

.f A summary [function / formula]

• If a **function**, e.g. mean, the function is used with any additional arguments,

• If a **formula**, e.g. ~ mean(., na.rm = TRUE), it is converted to a function.

This syntax allows you to anoth your comment anonymous functions

This syntax allows you to create very compact anonymous functions.

... Additional arguments passed on to the .f function.

. period The number of periods to include in the local rolling window. This is effectively

the "window size".

.align One of "center", "left" or "right".

.partial Should the moving window be allowed to return partial (incomplete) windows

instead of NA values. Set to FALSE by default, but can be switched to TRUE to

remove NA's.

Details

The slidify_vec() function is a wrapper for slider::slide_vec() with parameters simplified "center", "left", "right" alignment.

Vector Length In == Vector Length Out

NA values or .partial values are always returned to ensure the length of the return vector is the same length of the incoming vector. This ensures easier use with dplyr::mutate().

slidify_vec 77

Alignment

Rolling functions generate .period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- Center: NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values.
- Left: NA or .partial values are added to the end to shift the series to the Left.
- **Right:** NA or .partial values are added to the beginning to shif the series to the Right. This is common in Financial Applications such as moving average cross-overs.

Partial Values

- The advantage to using .partial values vs NA padding is that the series can be filled (good for time-series de-noising operations).
- The downside to partial values is that the partials can become less stable at the regions where incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is smooth_vec(), which implements local polynomial regression.

Value

A numeric vector

References

• Slider R Package by Davis Vaughan

See Also

Modeling and More Complex Rolling Operations:

- step_slidify() Roll apply for tidymodels modeling
- tk_augment_slidify() Add many rolling columns group-wise
- slidify() Turn any function into a rolling function. Great for rolling cor, rolling regression, etc.
- For more complex rolling operations, check out the slider R package.

Vectorized Transformation Functions:

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()

78 slidify_vec

Examples

```
library(dplyr)
library(ggplot2)
# Training Data
FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)
# ---- FUNCTION FORMAT ----
# - The `.f = mean` function is used. Argument `na.rm = TRUE` is passed as ...
FB_tbl %>%
   mutate(adjusted_30_ma = slidify_vec(
       .x = adjusted,
       .period = 30,
       .f
           = mean.
       na.rm = TRUE,
       .align = "center")) %>%
       ggplot(aes(date, adjusted)) +
       geom_line() +
       geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)
# ---- FORMULA FORMAT ----
# - Anonymous function `.f = ~ mean(., na.rm = TRUE)` is used
FB_tbl %>%
   mutate(adjusted_30_ma = slidify_vec(
       .x = adjusted,
       .period = 30,
       .f = \sim mean(., na.rm = TRUE),
        .align = "center")) %>%
       ggplot(aes(date, adjusted)) +
       geom_line() +
       geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)
# ---- PARTIAL VALUES ----
# - set `.partial = TRUE`
FB_tbl %>%
   mutate(adjusted_30_ma = slidify_vec(
             = adjusted,
        .f
                = ~ mean(., na.rm = TRUE),
       .period = 30,
        .align = "center",
        .partial = TRUE)) %>%
       ggplot(aes(date, adjusted)) +
       geom_line() +
       geom_line(aes(y = adjusted_30_ma), color = "blue")
# ---- Loess vs Moving Average ----
# - Loess: Using `.degree = 0` to make less flexible. Comparable to a moving average.
FB_tbl %>%
   mutate(
```

smooth_vec 79

smooth_vec

Smoothing Transformation using Loess

Description

smooth_vec() applies a LOESS transformation to a numeric vector.

Usage

```
smooth_vec(x, period = 30, span = NULL, degree = 2)
```

Arguments

x	A numeric vector to have a smoothing transformation applied.
period	The number of periods to include in the local smoothing. Similar to window size for a moving average. See details for an explanation period vs span specification.
span	The span is a percentage of data to be included in the smoothing window. Period is preferred for shorter windows to fix the window size. See details for an explanation period vs span specification.
degree	The degree of the polynomials to be used. Accetable values (least to most flexible): 0, 1, 2. Set to 2 by default for 2nd order polynomial (most flexible).

Details

Benefits:

- When using period, the effect is similar to a moving average without creating missing values.
- When using span, the effect is to detect the trend in a series using a percentage of the total number of observations.

80 smooth_vec

Loess Smoother Algorithm This function is a simplified wrapper for the stats::loess() with a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations change.

When to use Period? The effect of using a period is similar to a Moving Average where the Window Size is the **Fixed Period**. This helps when you are trying to smooth local trends. If you want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the window size is unknown. You can specify span = 0.75 to locally regress using a window of 75% of the data.

Value

A numeric vector

See Also

Loess Modeling Functions:

• step_smooth() - Recipe for tidymodels workflow

Additional Vector Functions:

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()

Examples

```
library(dplyr)
library(ggplot2)

# Training Data
FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)

# ---- PERIOD ----
FB_tbl %>%
    mutate(adjusted_30 = smooth_vec(adjusted, period = 30, degree = 2)) %>%
    ggplot(aes(date, adjusted)) +
    geom_line() +
    geom_line(aes(y = adjusted_30), color = "red")
```

standardize_vec 81

```
# ---- SPAN ----
FB_tbl %>%
   mutate(adjusted_30 = smooth_vec(adjusted, span = 0.75, degree = 2)) %>%
   ggplot(aes(date, adjusted)) +
    geom_line() +
    geom_line(aes(y = adjusted_30), color = "red")
# ---- Loess vs Moving Average ----
# - Loess: Using `degree = 0` to make less flexible. Comperable to a moving average.
FB_tbl %>%
   mutate(
        adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
        adjusted_ma_30 = slidify_vec(adjusted, .period = 30,
                                        .f = mean, .partial = TRUE)
   ) %>%
    ggplot(aes(date, adjusted)) +
    geom_line() +
    geom_line(aes(y = adjusted_loess_30), color = "red") +
    geom_line(aes(y = adjusted_ma_30), color = "blue") +
    labs(title = "Loess vs Moving Average")
```

standardize_vec

Standardize to Mean 0, Standard Deviation 1 (Center & Scale)

Description

Standardization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.

Usage

```
standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)
standardize_inv_vec(x, mean, sd)
```

Arguments

X	A numeric vector.
mean	The mean used to invert the standardization
sd	The standard deviation used to invert the standardization process.
silent	Whether or not to report the automated mean and sd parameters as a message.

82 standardize_vec

Details

Standardization vs Normalization

Standardization refers to a transformation that reduces the range to mean 0, standard deviation 1

• **Normalization** refers to a transformation that reduces the min-max range: (0, 1)

Value

Returns a numeric vector with the standardization transformation applied.

See Also

```
• Normalization/Standardization: standardize_vec(), normalize_vec()
```

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

step_box_cox 83

step_box_cox

Box-Cox Transformation using Forecast Methods

Description

step_box_cox creates a *specification* of a recipe step that will transform data using a Box-Cox transformation. This function differs from recipes::step_BoxCox by adding multiple methods including Guerrero lambda optimization and handling for negative data used in the Forecast R Package.

Usage

```
step_box_cox(
  recipe,
    ...,
  method = c("guerrero", "loglik"),
  limits = c(-1, 2),
  role = NA,
  trained = FALSE,
  lambdas_trained = NULL,
  skip = FALSE,
  id = rand_id("box_cox")
)

## S3 method for class 'step_box_cox'
tidy(x, ...)
```

Arguments

recipe	A recipe object.	The step will be	added to the sequence of	f operations for this
--------	------------------	------------------	--------------------------	-----------------------

recipe.

... One or more selector functions to choose which variables are affected by the

step. See selections() for more details. For the tidy method, these are not

currently used.

method One of "guerrero" or "loglik"

limits A length 2 numeric vector defining the range to compute the transformation

parameter lambda.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained

A numeric vector of transformation values. This is NULL until computed by

prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome

step_box_cox

variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_box_cox object.

Details

The step_box_cox() function is designed specifically to handle time series using methods implemented in the Forecast R Package.

Negative Data

This function can be applied to Negative Data.

Lambda Optimization Methods

This function uses 2 methods for optimizing the lambda selection from the Forecast R Package:

- 1. method = "guerrero": Guerrero's (1993) method is used, where lambda minimizes the coefficient of variation for subseries of x.
- 2. method = loglik: the value of lambda is chosen to maximize the profile log likelihood of a linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal data, a linear time trend with seasonal dummy variables is used.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

References

- 1. Guerrero, V.M. (1993) Time-series analysis supported by power transformations. *Journal of Forecasting*, **12**, 37–48.
- 2. Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Transformations to reduce variance:

• recipes::step_log() - Log transformation

step_diff 85

• recipes::step_sqrt() - Square-Root Power Transformation

Recipe Setup and Application:

```
recipes::recipe()recipes::prep()recipes::bake()
```

Examples

```
library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
    select(symbol, date, adjusted) %>%
    tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
    step_box_cox(FB, AMZN, NFLX, GOOG) %>%
    prep()

recipe_box_cox %>% bake(FANG_wide)

recipe_box_cox %>% tidy(1)
```

step_diff

Create a differenced predictor

Description

step_diff creates a *specification* of a recipe step that will add new columns of differenced data. Differenced data will include NA values where a difference was induced. These can be removed with step_naomit().

Usage

```
step_diff(
  recipe,
    ...,
  role = "predictor",
  trained = FALSE,
  lag = 1,
  difference = 1,
  log = FALSE,
  prefix = "diff_",
  columns = NULL,
  skip = FALSE,
```

86 step_diff

```
id = rand_id("diff")
)

## S3 method for class 'step_diff'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe. One or more selector functions to choose which variables are affected by the . . . step. See selections() for more details. role Defaults to "predictor" A logical to indicate if the quantities for preprocessing have been estimated. trained A vector of positive integers identifying which lags (how far back) to be included lag in the differencing calculation. difference The number of differences to perform. Calculates log differences instead of differences. log prefix A prefix for generated column names, default to "diff_". columns A character string of variable names that will be populated (eventually) by the terms argument. skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations

Details

id

Х

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

A character string that is unique to this step to identify it.

See Also

Time Series Analysis:

- $\bullet \ \ Engineered\ Features:\ step_timeseries_signature(), step_holiday_signature(), step_fourier()$
- Diffs & Lags step_diff(), recipes::step_lag()

A step_diff object.

- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()

step_fourier 87

```
• Imputation: step_ts_impute(), step_ts_clean()
```

• Padding: step_ts_pad()

Remove NA Values:

• recipes::step_naomit()

Main Recipe Functions:

```
recipes::recipe()recipes::prep()recipes::bake()
```

Examples

```
library(recipes)

FANG_wide <- FANG %>%
    dplyr::select(symbol, date, adjusted) %>%
    tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

# Make and apply recipe ----

recipe_diff <- recipe(~ ., data = FANG_wide) %>%
    step_diff(FB, AMZN, NFLX, GOOG, lag = 1:3, difference = 1) %>%
    prep()

recipe_diff %>% bake(FANG_wide)

# Get information with tidy ----

recipe_diff %>% tidy()

recipe_diff %>% tidy(1)
```

 $step_fourier$

Fourier Features for Modeling Seasonality

Description

step_fourier creates a a *specification* of a recipe step that will convert a Date or Date-time column into a Fourier series

step_fourier

Usage

```
step_fourier(
  recipe,
  ...,
  period,
  K,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  scale_factor = NULL,
  skip = FALSE,
  id = rand_id("fourier")
)

## S3 method for class 'step_fourier'
tidy(x, ...)
```

Arguments

id

Χ

recipe	A recipe object. The step will be added to the sequence of operations for this recipe.
• • •	A single column with class Date or POSIXct. See recipes::selections() for more details. For the tidy method, these are not currently used.
period	The numeric period for the oscillation frequency. See details for examples of period specification.
K	The number of orders to include for each sine/cosine fourier series. More orders increase the number of fourier terms and therefore the variance of the fitted model at the expense of bias. See details for examples of K specification.
role	For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
trained	A logical to indicate if the quantities for preprocessing have been estimated.
columns	A character string of variables that will be used as inputs. This field is a placeholder and will be populated once recipes::prep() is used.
scale_factor	A factor for scaling the numeric index extracted from the date or date-time feature. This is a placeholder and will be populated once recipes::prep() is used.
skip	A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

A character string that is unique to this step to identify it.

A step_fourier object.

step_fourier 89

Details

Date Variable

Unlike other steps, step_fourier does *not* remove the original date variables. recipes::step_rm() can be used for this purpose.

Period Specification

The period argument is used to generate the distance between peaks in the fourier sequence. The key is to line up the peaks with unique seasonalities in the data.

For Daily Data, typical period specifications are:

- Yearly frequency is 365
- Quarterly frequency is 365 / 4 = 91.25
- Monthly frequency is 365 / 12 = 30.42

K Specification

The K argument specifies the maximum number of orders of Fourier terms. Examples:

- Specifying period = 365 and K = 1 will return a cos365_K1 and sin365_K1 fourier series
- Specifying period = 365 and K = 2 will return a cos365_K1, cos365_K2, sin365_K1 and sin365_K2 sequence, which tends to increase the models ability to fit vs the K = 1 specification (at the expense of possibly overfitting).

Multiple values of period and K

It's possible to specify multiple values of period in a single step such as step_fourier(period = c(91.25, 365), K = 2. This returns 8 Fouriers series:

- cos91.25_K1, sin91.25_K1, cos91.25_K2, sin91.25_K2
- cos365_K1, sin365_K1, cos365_K2, sin365_K2

Value

For step_fourier, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Main Recipe Functions:

```
recipes::recipe()recipes::prep()recipes::bake()
```

Examples

```
library(recipes)
library(dplyr)
FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)
# Create a recipe object with a timeseries signature step
# - 252 Trade days per year
\# - period = c(252/4, 252): Adds quarterly and yearly fourier series
\# - K = 2: Adds 1st and 2nd fourier orders
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_fourier(date, period = c(252/4, 252), K = 2)
# View the recipe object
rec_obj
# Prepare the recipe object
prep(rec_obj)
# Bake the recipe object - Adds the Fourier Series
bake(prep(rec_obj), FB_tbl)
# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
tidy(prep(rec_obj), number = 1)
```

```
step_holiday_signature
```

Holiday Feature (Signature) Generator

Description

step_holiday_signature creates a a *specification* of a recipe step that will convert date or datetime data into many holiday features that can aid in machine learning with time-series data. By default, many features are returned for different *holidays*, *locales*, *and stock exchanges*.

Usage

```
step_holiday_signature(
  recipe,
  ...,
  holiday_pattern = ".",
  locale_set = "all",
   exchange_set = "all",
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  features = NULL,
  skip = FALSE,
  id = rand_id("holiday_signature")
)

## S3 method for class 'step_holiday_signature'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class Date or POSIXct.

See recipes::selections() for more details. For the tidy method, these are

not currently used.

holiday_pattern

A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",

"CA", "GB", "FR", "IT", "JP", "CH", "DE".

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",

"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

role For model terms created by this step, what analysis role should they be as-

signed?. By default, the function assumes that the new variable columns created

by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-

holder and will be populated once recipes::prep() is used.

features A character string of features that will be generated. This field is a placeholder

and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the

computations for subsequent operations.

- id A character string that is unique to this step to identify it.
- x A step_holiday_signature object.

Details

Use Holiday Pattern and Feature Sets to Pare Down Features By default, you're going to get A LOT of Features. This is a good thing because many machine learning algorithms have regularization built in. But, in many cases you will still want to reduce the number of *unnecessary features*. Here's how:

- **Holiday Pattern:** This is a Regular Expression pattern that can be used to filter. Try holiday_pattern = "(US_Christ)|(US_Thanks)" to return just Christmas and Thanksgiving features.
- Locale Sets: This is a logical as to whether or not the locale has a holiday. For locales outside of US you may want to combine multiple locales. For example, locale_set = c("World", "GB") returns both World Holidays and Great Britain.
- Exchange Sets: This is a logical as to whether or not the *Business is off* due to a holiday. Different Stock Exchanges are used as a proxy for business holiday calendars. For example, exchange_set = "NYSE" returns business holidays for New York Stock Exchange.

Removing Unnecessary Features By default, many features are created automatically. Unnecessary features can be removed using recipes::step_rm() and recipes::selections() for more details.

Value

For step_holiday_signature, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Main Recipe Functions:

- recipes::recipe()
- recipes::prep()
- recipes::bake()

step_log_interval 93

Examples

```
library(recipes)
library(dplyr)
# Sample Data
dates_in_2017_tbl <- tibble::tibble(</pre>
    index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")
# Add US holidays and Non-Working Days due to Holidays
# - Physical Holidays are added with holiday pattern (individual) and locale_set
rec_holiday <- recipe(~ ., dates_in_2017_tbl) %>%
    step_holiday_signature(index,
                           holiday_pattern = "^US_",
                           locale_set = "US",
                           exchange_set = "NYSE")
# Not yet prep'ed - just returns parameters selected
rec_holiday %>% tidy(1)
# Prep the recipe
rec_holiday_prep <- prep(rec_holiday)</pre>
# Now prep'ed - returns new features that will be created
rec_holiday_prep %>% tidy(1)
# Apply the recipe to add new holiday features!
bake(rec_holiday_prep, dates_in_2017_tbl)
```

step_log_interval

Log Interval Transformation for Constrained Interval Forecasting

Description

step_log_interval creates a *specification* of a recipe step that will transform data using a Log-Inerval transformation. This function provides a recipes interface for the log_interval_vec() transformation function.

Usage

```
step_log_interval(
  recipe,
    ...,
  limit_lower = "auto",
  limit_upper = "auto",
```

94 step_log_interval

```
offset = 0,
role = NA,
trained = FALSE,
limit_lower_trained = NULL,
limit_upper_trained = NULL,
skip = FALSE,
id = rand_id("log_interval")
)

## S3 method for class 'step_log_interval'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

... One or more selector functions to choose which variables are affected by the

step. See selections() for more details. For the tidy method, these are not

currently used.

zero

limit_upper An upper limit. Must be greater than the maximum value. If set to "auto", selects

a value that is 10% greater than the maximum value.

offset An offset to include in the log transformation. Useful when the data contains

values less than or equal to zero.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

limit_lower_trained

A numeric vector of transformation values. This is NULL until computed by

prep().

limit_upper_trained

A numeric vector of transformation values. This is NULL until computed by

prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the

computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_log_interval object.

Details

The step_log_interval() function is designed specifically to handle time series using methods implemented in the Forecast R Package.

Positive Data

step_log_interval 95

If data includes values of zero, use offset to adjust the series to make the values positive.

Implementation

Refer to the log_interval_vec() function for the transformation implementation details.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

See Also

Time Series Analysis:

```
• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
```

```
• Diffs & Lags step_diff(), recipes::step_lag()
```

```
• Smoothing: step_slidify(), step_smooth()
```

```
• Variance Reduction: step_log_interval()
```

- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Transformations to reduce variance:

```
• recipes::step_log() - Log transformation
```

• recipes::step_sqrt() - Square-Root Power Transformation

Recipe Setup and Application:

```
recipes::recipe()recipes::prep()recipes::bake()
```

Examples

```
library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
    select(symbol, date, adjusted) %>%
    tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_log_interval <- recipe(~ ., data = FANG_wide) %>%
    step_log_interval(FB, AMZN, NFLX, GOOG, offset = 1) %>%
    prep()

recipe_log_interval %>%
    bake(FANG_wide) %>%
    tidyr::pivot_longer(-date) %>%
    plot_time_series(date, value, name, .smooth = FALSE, .interactive = FALSE)
```

96 step_slidify

```
recipe_log_interval %>% tidy(1)
```

step_slidify

Slidify Rolling Window Transformation

Description

step_slidify creates a a *specification* of a recipe step that will apply a function to one or more a Numeric column(s).

Usage

```
step_slidify(
  recipe,
  . . . ,
 period,
  .f,
  align = c("center", "left", "right"),
 partial = FALSE,
 names = NULL,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
 f_name = NULL,
 skip = FALSE,
  id = rand_id("slidify")
)
## S3 method for class 'step_slidify'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.

One or more numeric columns to be smoothed. See recipes::selections() for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local rolling window. This is effectively the "window size".

. f A summary **formula** in one of the following formats:

- mean with no arguments
- function(x) mean(x, na.rm = TRUE)
- ~ mean(.x, na.rm = TRUE), it is converted to a function.

step_slidify 97

align

Rolling functions generate period – 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- Center: NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values
- Left: NA or .partial values are added to the end to shift the series to the Left.
- **Right:** NA or .partial values are added to the beginning to shif the series to the Right. This is common in Financial Applications such as moving average cross-overs.

partial

Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA's.

names

An optional character string that is the same length of the number of terms selected by terms. These will be the names of the **new columns** created by the step.

- If NULL, existing columns are transformed.
- If not NULL, new columns will be created.

role

For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

columns

A character string of variables that will be used as inputs. This field is a place-holder and will be populated once recipes::prep() is used.

f_name

A character string for the function being applied. This field is a placeholder and will be populated during the tidy() step.

skip

A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id

A character string that is unique to this step to identify it.

Χ

A step_slidify object.

Details

Alignment

Rolling functions generate period – 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- Center: NA or partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values.
- Left: NA or partial values are added to the end to shift the series to the Left.

98 step_slidify

• **Right:** NA or partial values are added to the beginning to shif the series to the Right. This is common in Financial Applications such as moving average cross-overs.

Partial Values

- The advantage to using partial values vs NA padding is that the series can be filled (good for time-series de-noising operations).
- The downside to partial values is that the partials can become less stable at the regions where incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is step_smooth(), which implements local polynomial regression.

Value

For step_slidify, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

```
• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
```

```
• Diffs & Lags step_diff(), recipes::step_lag()
```

- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Main Recipe Functions:

```
recipes::recipe()recipes::prep()
```

• recipes::bake()

Examples

```
library(recipes)
library(dplyr)
library(ggplot2)

# Training Data
FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)

# New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%
    tail(90) %>%
```

step_slidify_augment 99

```
mutate(date = date %>% tk_make_future_timeseries(length_out = 90))
# OVERWRITE EXISTING COLUMNS -----
# Create a recipe object with a step_slidify
rec_ma_50 <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_slidify(adjusted, period = 50, .f = \sim mean(.x))
# Bake the recipe object - Applies the Moving Average Transformation
training_data_baked <- bake(prep(rec_ma_50), FB_tbl)</pre>
# Apply to New Data
new_data_baked <- bake(prep(rec_ma_50), new_data)</pre>
# Visualize effect
training_data_baked %>%
   ggplot(aes(date, adjusted)) +
   geom_line() +
   geom_line(color = "red", data = new_data_baked)
# ---- NEW COLUMNS ----
# Use the `names` argument to create new columns instead of overwriting existing
rec_ma_30_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_slidify(adjusted, period = 30, .f = mean, names = "adjusted_ma_30")
bake(prep(rec_ma_30_names), FB_tbl) %>%
   ggplot(aes(date, adjusted)) +
   geom\_line(alpha = 0.5) +
   geom_line(aes(y = adjusted_ma_30), color = "red", size = 1)
```

step_slidify_augment Slidify Rolling Window Transformation (Augmented Version)

Description

step_slidify_augment creates a a *specification* of a recipe step that will "augment" (add multiple new columns) that have had a sliding function applied.

Usage

```
step_slidify_augment(
  recipe,
  ...,
  period,
  .f,
  align = c("center", "left", "right"),
```

```
partial = FALSE,
prefix = "slidify_",
role = "predictor",
trained = FALSE,
columns = NULL,
f_name = NULL,
skip = FALSE,
id = rand_id("slidify_augment")
)

## S3 method for class 'step_slidify_augment'
tidy(x, ...)
```

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

. . .

One or more numeric columns to be smoothed. See recipes::selections() for more details. For the tidy method, these are not currently used.

period

The number of periods to include in the local rolling window. This is effectively the "window size".

. f

A summary **formula** in one of the following formats:

- mean with no arguments
- function(x) mean(x, na.rm = TRUE)
- ~ mean(.x, na.rm = TRUE), it is converted to a function.

align

Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- Center: NA or .partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values.
- Left: NA or .partial values are added to the end to shift the series to the Left.
- **Right:** NA or .partial values are added to the beginning to shif the series to the Right. This is common in Financial Applications such as moving average cross-overs.

partial

Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to TRUE to remove NA's.

prefix

A prefix for generated column names, default to "slidify_".

role

For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

step_slidify_augment 101

columns	A character string of variable names that will be populated (eventually) by the terms argument.
f_name	A character string for the function being applied. This field is a placeholder and will be populated during the tidy() step.
skip	A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations
id	A character string that is unique to this step to identify it.
X	A step_slidify_augment object.

Details

Alignment

Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

- Center: NA or partial values are divided and added to the beginning and end of the series to "Center" the moving average. This is common for de-noising operations. See also [smooth_vec()] for LOESS without NA values.
- Left: NA or partial values are added to the end to shift the series to the Left.
- **Right:** NA or partial values are added to the beginning to shif the series to the Right. This is common in Financial Applications such as moving average cross-overs.

Partial Values

- The advantage to using partial values vs NA padding is that the series can be filled (good for time-series de-noising operations).
- The downside to partial values is that the partials can become less stable at the regions where incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is step_smooth(), which implements local polynomial regression.

Value

For step_slidify_augment, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()

```
• Variance Reduction: step_box_cox()
       • Imputation: step_ts_impute(), step_ts_clean()
       • Padding: step_ts_pad()
    Main Recipe Functions:
       • recipes::recipe()
       • recipes::prep()
       • recipes::bake()
Examples
    # library(tidymodels)
    library(dplyr)
    library(recipes)
   library(parsnip)
    m750 <- m4_monthly %>%
        filter(id == "M750") %>%
       mutate(value_2 = value / 2)
   m750_splits <- time_series_split(m750, assess = "2 years", cumulative = TRUE)</pre>
    # Make a recipe
    recipe_spec <- recipe(value ~ date + value_2, rsample::training(m750_splits)) %>%
        step_slidify_augment(
            value, value_2,
            period = c(6, 12, 24),
            .f = \sim mean(.x),
            align = "center"
            partial = FALSE
        )
    recipe_spec %>% prep() %>% juice()
    bake(prep(recipe_spec), rsample::testing(m750_splits))
```

 $step_smooth$

Smoothing Transformation using Loess

Description

step_smooth creates a a *specification* of a recipe step that will apply local polynomial regression to one or more a Numeric column(s). The effect is smoothing the time series **similar to a moving average without creating missing values or using partial smoothing.**

Usage

```
step_smooth(
  recipe,
  . . . ,
  period = 30,
  span = NULL,
  degree = 2,
  names = NULL,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("smooth")
)
## S3 method for class 'step_smooth'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

One or more numeric columns to be smoothed. See recipes::selections()

for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local smoothing. Similar to window

size for a moving average. See details for an explanation period vs span spec-

ification.

The span is a percentage of data to be included in the smoothing window. Pespan

riod is preferred for shorter windows to fix the window size. See details for an

explanation period vs span specification.

The degree of the polynomials to be used. Set to 2 by default for 2nd order degree

polynomial.

An optional character string that is the same length of the number of terms senames

lected by terms. These will be the names of the new columns created by the

• If NULL, existing columns are transformed.

• If not NULL, new columns will be created.

For model terms created by this step, what analysis role should they be as-

signed?. By default, the function assumes that the new variable columns created

by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

A character string of variables that will be used as inputs. This field is a place-

holder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may

role

columns

not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_smooth object.

Details

Smoother Algorithm This function is a recipe specification that wraps the stats::loess() with a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations change.

When to use Period? The effect of using a period is similar to a Moving Average where the Window Size is the **Fixed Period**. This helps when you are trying to smooth local trends. If you want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the window size is unknown. You can specify span = 0.75 to locally regress using a window of 75% of the data.

Warning - Using Span with New Data When using span on New Data, the number of observations is likely different than what you trained with. This means the trendline / smoother can be vastly different than the smoother you trained with.

Solution to Span with New Data Don't use span. Rather, use period to fix the window size. This ensures that new data includes the same number of observations in the local polynomial regression (loess) as the training data.

Value

For step_smooth, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Main Recipe Functions:

- recipes::recipe()
- recipes::prep()
- recipes::bake()

Examples

```
library(recipes)
library(dplyr)
library(ggplot2)
# Training Data
FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)
# New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%
    tail(90) %>%
    mutate(date = date %>% tk_make_future_timeseries(length_out = 90))
# ---- PERIOD ----
# Create a recipe object with a step_smooth()
rec_smooth_period <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_smooth(adjusted, period = 30)
# Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_period), FB_tbl)</pre>
# "Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_period), new_data)</pre>
# Smoother's fit on new data is very similar because
# 30 days are used in the new data regardless of the new data being 90 days
training_data_baked %>%
    ggplot(aes(date, adjusted)) +
    geom_line() +
    geom_line(color = "red", data = new_data_baked)
# ---- SPAN ----
# Create a recipe object with a step_smooth
rec_smooth_span <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step\_smooth(adjusted, span = 0.03)
# Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_span), FB_tbl)</pre>
# "Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_span), new_data)</pre>
# Smoother's fit is not the same using span because new data is only 90 days
\# and 0.03 x 90 = 2.7 days
training_data_baked %>%
   ggplot(aes(date, adjusted)) +
    geom_line() +
    geom_line(color = "red", data = new_data_baked)
```

```
# ---- NEW COLUMNS ----
# Use the `names` argument to create new columns instead of overwriting existing

rec_smooth_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_smooth(adjusted, period = 30, names = "adjusted_smooth_30") %>%
    step_smooth(adjusted, period = 180, names = "adjusted_smooth_180") %>%
    step_smooth(adjusted, span = 0.75, names = "long_term_trend")

bake(prep(rec_smooth_names), FB_tbl) %>%
    ggplot(aes(date, adjusted)) +
    geom_line(alpha = 0.5) +
    geom_line(aes(y = adjusted_smooth_30), color = "red", size = 1) +
    geom_line(aes(y = adjusted_smooth_180), color = "blue", size = 1) +
    geom_line(aes(y = long_term_trend), color = "orange", size = 1)
```

```
step_timeseries_signature
```

Time Series Feature (Signature) Generator

Description

step_timeseries_signature creates a a *specification* of a recipe step that will convert date or date-time data into many features that can aid in machine learning with time-series data

Usage

```
step_timeseries_signature(
   recipe,
   ...,
   role = "predictor",
   trained = FALSE,
   columns = NULL,
   skip = FALSE,
   id = rand_id("timeseries_signature")
)

## S3 method for class 'step_timeseries_signature'
tidy(x, ...)
```

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

•••	One or more selector functions to choose which variables that will be used to create the new variables. The selected variables should have class Date or POSIXct. See recipes::selections() for more details. For the tidy method, these are not currently used.
role	For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
trained	A logical to indicate if the quantities for preprocessing have been estimated.
columns	A character string of variables that will be used as inputs. This field is a place-holder and will be populated once recipes::prep() is used.
skip	A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.
id	A character string that is unique to this step to identify it.
X	A step_timeseries_signature object.

Details

Date Variable Unlike other steps, step_timeseries_signature does *not* remove the original date variables. recipes::step_rm() can be used for this purpose.

Scaling index.num The index.num feature created has a large magnitude (number of seconds since 1970-01-01). It's a good idea to scale and center this feature (e.g. use recipes::step_normalize()).

Removing Unnecessary Features By default, many features are created automatically. Unnecessary features can be removed using recipes::step_rm().

Value

For step_timeseries_signature, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

Main Recipe Functions:

step_ts_clean

```
recipes::recipe()recipes::prep()recipes::bake()
```

Examples

```
library(recipes)
library(dplyr)
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
# Create a recipe object with a timeseries signature step
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_timeseries_signature(date)
# View the recipe object
rec_obj
# Prepare the recipe object
prep(rec_obj)
# Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), FB_tbl)
# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(rec_obj)
tidy(rec_obj, number = 1)
```

step_ts_clean

Clean Outliers and Missing Data for Time Series

Description

step_ts_clean creates a *specification* of a recipe step that will clean outliers and impute time series data.

Usage

```
step_ts_clean(
  recipe,
  ...,
  period = 1,
  lambda = "auto",
  role = NA,
  trained = FALSE,
```

step_ts_clean 109

```
lambdas_trained = NULL,
  skip = FALSE,
  id = rand_id("ts_clean")
)

## S3 method for class 'step_ts_clean'
tidy(x, ...)
```

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this

recipe.

... One or more selector functions to choose which variables are affected by the

step. See selections() for more details. For the tidy method, these are not

currently used.

period A seasonal period to use during the transformation. If period = 1, linear in-

terpolation is performed. If period > 1, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated

lambda selection.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained

A named numeric vector of lambdas. This is NULL until computed by recipes::prep().

Note that, if the original data are integers, the mean will be converted to an inte-

ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the

computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ts_clean object.

Details

The step_ts_clean() function is designed specifically to handle time series using seasonal outlier detection methods implemented in the Forecast R Package.

Cleaning Outliers

#' Outliers are replaced with missing values using the following methods:

- 1. Non-Seasonal (period = 1): Uses stats::supsmu()
- 2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decomposition) for seasonal series.

step_ts_clean

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

- 1. **Period is 1:** With period = 1, a seasonality cannot be interpreted and therefore linear is used.
- 2. **Number of Non-Missing Values is less than 2-Periods**: Insufficient values exist to detect seasonality.
- 3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()
- Imputation: step_ts_impute(), step_ts_clean()
- Padding: step_ts_pad()

```
library(dplyr)
library(tidyr)
library(recipes)
# Get missing values
FANG_wide <- FANG %>%
```

step_ts_impute 111

```
select(symbol, date, adjusted) %>%
  pivot_wider(names_from = symbol, values_from = adjusted) %>%
  pad_by_time()

FANG_wide

# Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
    step_ts_clean(FB, AMZN, NFLX, GOOG, period = 252) %>%
    prep()

recipe_box_cox %>% bake(FANG_wide)

# Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)
```

step_ts_impute

Missing Data Imputation for Time Series

Description

step_ts_impute creates a *specification* of a recipe step that will impute time series data.

Usage

```
step_ts_impute(
  recipe,
  ...,
  period = 1,
  lambda = NULL,
  role = NA,
  trained = FALSE,
  lambdas_trained = NULL,
  skip = FALSE,
  id = rand_id("ts_impute")
)

## S3 method for class 'step_ts_impute'
tidy(x, ...)
```

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

step_ts_impute

... One or more selector functions to choose which variables are affected by the

step. See selections() for more details. For the tidy method, these are not

currently used.

period A seasonal period to use during the transformation. If period = 1, linear in-

terpolation is performed. If period > 1, a robust STL decomposition is first

performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated

lambda selection.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas_trained

A named numeric vector of lambdas. This is NULL until computed by recipes::prep().

Note that, if the original data are integers, the mean will be converted to an inte-

ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?

While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the

computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ts_impute object.

Details

The step_ts_impute() function is designed specifically to handle time series

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

- 1. **Period is 1:** With period = 1, a seasonality cannot be interpreted and therefore linear is used.
- 2. **Number of Non-Missing Values is less than 2-Periods**: Insufficient values exist to detect seasonality.
- 3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected) and value (the lambda estimate).

step_ts_impute 113

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

```
Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
Diffs & Lags step_diff(), recipes::step_lag()
Smoothing: step_slidify(), step_smooth()
Variance Reduction: step_box_cox()
Imputation: step_ts_impute(), step_ts_clean()
Padding: step_ts_pad()
```

Recipe Setup and Application:

```
recipes::recipe()recipes::prep()recipes::bake()
```

```
library(dplyr)
library(recipes)

# Get missing values
FANG_wide <- FANG %>%
    select(symbol, date, adjusted) %>%
    tidyr::pivot_wider(names_from = symbol, values_from = adjusted) %>%
    pad_by_time()

FANG_wide

# Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
    step_ts_impute(FB, AMZN, NFLX, GOOG, period = 252, lambda = "auto") %>%
    prep()

recipe_box_cox %>% bake(FANG_wide)

# Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)
```

114 step_ts_pad

step_ts_pad

Pad: Add rows to fill gaps and go from low to high frequency

Description

step_ts_pad creates a a *specification* of a recipe step that will analyze a Date or Date-time column adding rows at a specified interval.

Usage

```
step_ts_pad(
  recipe,
    ...,
  by = "day",
  pad_value = NA,
  role = "predictor",
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("ts_padding")
)

## S3 method for class 'step_ts_pad'
tidy(x, ...)
```

Arguments

recipe	A recipe object. The step will be added to the sequence of operations for this recipe.
• • •	A single column with class Date or POSIXct. See recipes::selections() for more details. For the tidy method, these are not currently used.
by	Either "auto", a time-based frequency like "year", "month", "day", "hour", etc, or a time expression like "5 min", or "7 days". See Details.
pad_value	Fills in padded values. Default is NA.
role	For model terms created by this step, what analysis role should they be assigned? By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
trained	A logical to indicate if the quantities for preprocessing have been estimated.
columns	A character string of variables that will be used as inputs. This field is a placeholder and will be populated once recipes::prep() is used.
skip	A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

step_ts_pad 115

id A character string that is unique to this step to identify it.

x A step_ts_pad object.

Details

Date Variable

- Only one date or date-time variable may be supplied.
- step_ts_pad()) does *not* remove the original date variables.

Interval Specification (by)

Padding can be applied in the following ways:

- The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.
- Intervals like 30 minutes, 1 hours, 14 days are possible.

Imputing Missing Values

The generic pad_value defaults to NA, which typically requires imputation. Some common strategies include:

- Numeric data: The step_ts_impute() preprocessing step can be used to impute numeric time series data with or without seasonality
- **Nominal data:** The step_mode_impute() preprocessing step can be used to replace missing values with the most common value.

Value

For step_ts_pad, an updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables selected), value (the feature names).

See Also

Padding & Imputation:

- Pad Time Series: step_ts_pad()
- Impute missing values with these: step_ts_impute(), step_ts_clean()

Time Series Analysis:

- Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
- Diffs & Lags step_diff(), recipes::step_lag()
- Smoothing: step_slidify(), step_smooth()
- Variance Reduction: step_box_cox()

Main Recipe Functions:

```
recipes::recipe()recipes::prep
```

• recipes::bake

116 summarise_by_time

Examples

```
library(recipes)
library(dplyr)
FB tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
    step_ts_pad(date, by = "day", pad_value = NA)
# View the recipe object
rec_obj
# Prepare the recipe object
prep(rec_obj)
# Bake the recipe object - Adds the padding
bake(prep(rec_obj), FB_tbl)
# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
tidy(prep(rec_obj), number = 1)
```

summarise_by_time

Summarise (for Time Series Data)

Description

summarise_by_time() is a time-based variant of the popular dplyr::summarise() function that uses .date_var to specify a date or date-time column and .by to group the calculation by groups like "5 seconds", "week", or "3 months".

```
summarise_by_time() and summarize_by_time() are synonyms.
```

Usage

```
summarise_by_time(
   .data,
   .date_var,
   .by = "day",
   ...,
   .type = c("floor", "ceiling", "round"),
   .week_start = NULL
)
```

summarise_by_time 117

```
summarize_by_time(
   .data,
   .date_var,
   .by = "day",
   ...,
   .type = c("floor", "ceiling", "round"),
   .week_start = NULL
)
```

Arguments

.data A tbl object or data.frame

. date_var A column containing date or date-time values to summarize. If missing, attempts

to auto-detect date column.

The value can be:

- second
- minute
- hour
- day
- 0.0.
- week
- month
- bimonth
- quarter
- season
- halfyearyear

Arbitrary unique English abbreviations as in the lubridate::period() constructor are allowed.

Name-value pairs of summary functions. The name will be the name of the variable in the result.

The value can be:

- A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
- A vector of length n, e.g. quantile().
- A data frame, to add multiple columns from a single expression.

.type
.week_start

One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate::round_date.

when unit is weeks, specify the reference day. 7 represents Sunday and 1 represents Monday.

Value

A tibble or data.frame

118 summarise_by_time

Useful summary functions

```
Sum: sum()
Center: mean(), median()
Spread: sd(), var()
Range: min(), max()
Count: dplyr::n(), dplyr::n_distinct()
Position: dplyr::first(), dplyr::last(), dplyr::nth()
Correlation: cor(), cov()
```

See Also

Time-Based dplyr functions:

- summarise_by_time() Easily summarise using a date column.
- mutate_by_time() Simplifies applying mutations by time windows.
- filter_by_time() Quickly filter using date ranges.
- filter_period() Apply filtering expressions inside periods (windows)
- between_time() Range detection for date or date-time sequences.
- pad_by_time() Insert time series rows with regularly spaced timestamps
- condense_period() Convert to a different periodicity
- slidify() Turn any function into a sliding (rolling) function

```
# Libraries
library(dplyr)
# First value in each month
m4_daily %>%
    group_by(id) %>%
    summarise_by_time(
        .date_var = date,
        .by = "month", # Setup for monthly aggregation
       # Summarization
        value = first(value)
   )
# Last value in each month (day is first day of next month with ceiling option)
m4_daily %>%
    group_by(id) %>%
    summarise_by_time(
       .by = "month",
value = last(value),
                 = "ceiling"
        .type
    ) %>%
    # Shift to the last day of the month
   mutate(date = date %-time% "1 day")
```

taylor_30_min 119

```
# Total each year (.by is set to "year" now)
m4_daily %>%
   group_by(id) %>%
   summarise_by_time(
        .by = "year",
        value = sum(value)
   )
```

taylor_30_min

Half-hourly electricity demand

Description

Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27 August 2000. Discussed in Taylor (2003).

Usage

```
taylor_30_min
```

Format

A tibble: 4,032 x 2

• date: A date-time variable in 30-minute increments

• value: Electricity demand in Megawatts

Source

James W Taylor

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. *Journal of the Operational Research Society*, **54**, 799-805.

```
taylor_30_min
```

120 time_arithmetic

time_arithmetic

Add / Subtract (For Time Series)

Description

The easiest way to add / subtract a period to a time series date or date-time vector.

Usage

```
add_time(index, period)
subtract_time(index, period)
index %+time% period
index %-time% period
```

Arguments

index A date or date-time vector. Can also accept a character representation.

period A period to add. Accepts character strings like "5 seconds", "2 days", and com-

plex strings like "1 month 4 days 34 minutes".

Details

A convenient wrapper for lubridate::period(). Adds and subtracts a period from a time-based index. Great for:

- Finding a timestamp n-periods into the future or past
- Shifting a time-based index. Note that NA values may be present where dates don't exist.

Period Specification

The period argument accepts complex strings like:

- "1 month 4 days 43 minutes"
- "second = 3, minute = 1, hour = 2, day = 13, week = 1"

Value

A date or datetime (POSIXct) vector the same length as index with the time values shifted +/- a period.

See Also

Other Time-Based vector functions:

• between_time() - Range detection for date or date-time sequences.

Underlying function:

• lubridate::period()

time_series_cv 121

Examples

```
# ---- LOCATING A DATE N-PERIODS IN FUTURE / PAST ----
# Forward (Plus Time)
"2021" %+time% "1 hour 34 seconds"
"2021" %+time% "3 months"
"2021" %+time% "1 year 3 months 6 days"
# Backward (Minus Time)
"2021" %-time% "1 hour 34 seconds"
"2021" %-time% "3 months"
"2021" %-time% "1 year 3 months 6 days"
# ---- INDEX SHIFTING ----
index_daily <- tk_make_timeseries("2016", "2016-02-01")</pre>
# - Note `NA` values created where a daily dates aren't possible
# (e.g. Feb 29 & 30, 2016 doesn't exist).
index_daily %+time% "1 month"
# Subtracting Time
index_daily %-time% "1 month"
```

time_series_cv

Time Series Cross Validation

Description

Create rsample cross validation sets for time series. This function produces a sampling plan starting with the most recent time series observations, rolling backwards. The sampling procedure is similar to rsample::rolling_origin(), but places the focus of the cross validation on the most recent time series data.

Usage

```
time_series_cv(
  data,
  date_var = NULL,
  initial = 5,
  assess = 1,
  skip = 1,
  lag = 0,
```

122 time_series_cv

```
cumulative = FALSE,
  slice_limit = n(),
  point_forecast = FALSE,
   ...
)
```

Arguments

data	A data frame.
date_var	A date or date-time variable.
initial	The number of samples used for analysis/modeling in the initial resample.
assess	The number of samples used for each assessment resample.
skip	A integer indicating how many (if any) <i>additional</i> resamples to skip to thin the total amount of data points in the analysis resample. See the example below.
lag	A value to include an lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
cumulative	A logical. Should the analysis resample grow beyond the size specified by initial at each resample?.
slice_limit	The number of slices to return. Set to dplyr::n(), which returns the maximum number of slices.
point_forecast	Whether or not to have the testing set be a single point forecast or to be a forecast horizon. The default is to be a forecast horizon. Default: FALSE
	These dots are for future extensions and must be empty.

Details

Time-Based Specification

The initial, assess, skip, and lag variables can be specified as:

- Numeric: initial = 24
- Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-time)

Initial (Training Set) and Assess (Testing Set)

The main options, initial and assess, control the number of data points from the original data that are in the analysis (training set) and the assessment (testing set), respectively.

Skip

skip enables the function to not use every data point in the resamples. When skip = 1, the resampling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the analysis data set operate on *weeks* instead of days. The assessment set size is not affected by this option.

Lag

The Lag parameter creates an overlap between the Testing set. This is needed when lagged predictors are used.

time_series_cv 123

Cumulative vs Sliding Window

When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling occurs over a fixed window.

Slice Limit

This controls the number of slices. If slice_limit = 5, only the most recent 5 slices will be returned.

Point Forecast

A point forecast is sometimes desired such as if you want to forecast a value "4-weeks" into the future. You can do this by setting the following parameters:

```
• assess = "4 weeks"
```

• point_forecast = TRUE

Panel Data / Time Series Groups / Overlapping Timestamps

Overlapping timestamps occur when your data has more than one time series group. This is sometimes called *Panel Data* or *Time Series Groups*.

When timestamps are duplicated (as in the case of "Panel Data" or "Time Series Groups"), the resample calculation applies a sliding window of fixed length to the dataset. See the example using walmart_sales_weekly dataset below.

Value

An tibble with classes time_series_cv, rset, tbl_df, tbl, and data. frame. The results include a column for the data split objects and a column called id that has a character string with the resample identifier.

See Also

- time_series_cv() and rsample::rolling_origin() Functions used to create time series resample specifications.
- plot_time_series_cv_plan() The plotting function used for visualizing the time series resample plan.
- time_series_split() A convenience function to return a single time series split containing a training/testing sample.

```
library(dplyr)

# DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")

# RESAMPLE SPEC ----
resample_spec <- time_series_cv(data = m750,</pre>
```

time_series_split

```
initial = "6 years",
assess = "24 months",
skip = "24 months",
                                   cumulative = FALSE,
                                   slice_limit = 3)
resample_spec
# VISUALIZE CV PLAN ----
# Select date and value columns from the tscv diagnostic tool
resample_spec %>% tk_time_series_cv_plan()
# Plot the date and value columns to see the CV Plan
resample_spec %>%
    plot_time_series_cv_plan(date, value, .interactive = FALSE)
# PANEL DATA / TIME SERIES GROUPS ----
# - Time Series Groups are processed using an *ungrouped* data set
# - The data has sliding windows applied starting with the beginning of the series
# - The seven groups of weekly time series are
    processed together for <split [358/78]> dimensions
walmart_tscv <- walmart_sales_weekly %>%
    time_series_cv(
        date_var = Date,
initial = "12 months",
assess = "3 months",
skip = "3 months",
                    = "3 months",
        skip
        slice_limit = 4
    )
walmart_tscv
walmart_tscv %>%
    plot_time_series_cv_plan(Date, Weekly_Sales, .interactive = FALSE)
```

time_series_split

Simple Training/Test Set Splitting for Time Series

Description

time_series_split creates resample splits using time_series_cv() but returns only a **single split.** This is useful when creating a single train/test split.

Usage

```
time_series_split(
```

time_series_split 125

```
data,
  date_var = NULL,
  initial = 5,
  assess = 1,
  skip = 1,
  lag = 0,
  cumulative = FALSE,
  slice = 1,
  point_forecast = FALSE,
  ...
)
```

Arguments

data	A data frame.
date_var	A date or date-time variable.
initial	The number of samples used for analysis/modeling in the initial resample.
assess	The number of samples used for each assessment resample.
	A integer indicating how many (if any) <i>additional</i> resamples to skip to thin the total amount of data points in the analysis resample. See the example below.
•	A value to include an lag between the assessment and analysis set. This is useful if lagged predictors will be used during training and testing.
cumulative	A logical. Should the analysis resample grow beyond the size specified by initial at each resample?.
slice	Returns a single slice from time_series_cv
point_forecast	Whether or not to have the testing set be a single point forecast or to be a forecast horizon. The default is to be a forecast horizon. Default: FALSE
	These dots are for future extensions and must be empty.

Details

Time-Based Specification

The initial, assess, skip, and lag variables can be specified as:

- Numeric: initial = 24
- Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-time)

Initial (Training Set) and Assess (Testing Set)

The main options, initial and assess, control the number of data points from the original data that are in the analysis (training set) and the assessment (testing set), respectively.

Skip

skip enables the function to not use every data point in the resamples. When skip = 1, the resampling data sets will increment by one position.

time_series_split

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the analysis data set operate on *weeks* instead of days. The assessment set size is not affected by this option.

Lag

The Lag parameter creates an overlap between the Testing set. This is needed when lagged predictors are used.

Cumulative vs Sliding Window

When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling occurs over a fixed window.

Slice

This controls which slice is returned. If slice = 1, only the most recent slice will be returned.

Value

An rsplit object that can be used with the training and testing functions to extract the data in each split.

See Also

• time_series_cv() and rsample::rolling_origin() - Functions used to create time series resample specifications.

```
library(dplyr)
# DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")
# Get the most recent 3 years as testing, and previous 10 years as training
    time_series_split(initial = "10 years", assess = "3 years")
# Skip the most recent 3 years
m750 %>%
    time_series_split(
        initial = "10 years",
        assess = "3 years",
       skip = "3 years",
        slice = 2
                            # <- Returns 2nd slice, 3-years back
    )
# Add 1 year lag for testing overlap
m750 %>%
    time_series_split(
       initial = "10 years",
       assess = "3 years",
```

tk_acf_diagnostics 127

```
skip = "3 years",
slice = 2,
lag = "1 year" # <- Overlaps training/testing by 1 year
)</pre>
```

tk_acf_diagnostics

Group-wise ACF, PACF, and CCF Data Preparation

Description

The tk_acf_diagnostics() function provides a simple interface to detect Autocorrelation (ACF), Partial Autocorrelation (PACF), and Cross Correlation (CCF) of Lagged Predictors in one tibble. This function powers the plot_acf_diagnostics() visualization.

Usage

```
tk_acf_diagnostics(.data, .date_var, .value, .ccf_vars = NULL, .lags = 1000)
```

Arguments

.data	A data frame or tibble with numeric features (values) in descending chronological order
.date_var	A column containing either date or date-time values
.value	A numeric column with a value to have ACF and PACF calculations performed.
.ccf_vars	Additional features to perform Lag Cross Correlations (CCFs) versus the .value. Useful for evaluating external lagged regressors.
.lags	A sequence of one or more lags to evaluate.

Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3 at once? Now you can!

- ACF Autocorrelation between a target variable and lagged versions of itself
- PACF Partial Autocorrelation removes the dependence of lags on other lags highlighting key seasonalities.
- CCF Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification

Lags (.lags) can either be specified as:

- A time-based phrase indicating a duraction (e.g. 2 months)
- A maximum lag (e.g. .lags = 28)
- A sequence of lags (e.g. .lags = 7:28)

128 tk_acf_diagnostics

Scales to Multiple Time Series with Groupes

The tk_acf_diagnostics() works with grouped_df's, meaning you can group your time series by one or more categorical columns with dplyr::group_by() and then apply tk_acf_diagnostics() to return group-wise lag diagnostics.

Special Note on Dots (...)

Unlike other plotting utilities, the . . . arguments is NOT used for group-wise analysis. Rather, it's used for processing Cross Correlations (CCFs).

Use dplyr::group_by() for processing multiple time series groups.

Value

A tibble or data. frame containing the autocorrelation, partial autocorrelation and cross correlation data.

See Also

- Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()
- Visualizing Seasonality: plot_seasonal_diagnostics()
- Visualizing Time Series: plot_time_series()

```
library(dplyr)
# ACF, PACF, & CCF in 1 Data Frame
# - Get ACF & PACF for target (adjusted)
# - Get CCF between adjusted and volume and close
FANG %>%
    filter(symbol == "FB") %>%
                                                     # ACF & PACF
    tk_acf_diagnostics(date, adjusted,
                       .ccf_vars = c(volume, close), # CCFs
                       .lags = 500)
# Scale with groups using group_by()
FANG %>%
   group_by(symbol) %>%
    tk_acf_diagnostics(date, adjusted,
                       .ccf_vars = c(volume, close),
                       .lags = "3 months")
# Apply Transformations
FANG %>%
    group_by(symbol) %>%
    tk_acf_diagnostics(
        date, diff_vec(adjusted), # Apply differencing transformation
        .lags = 0:500
    )
```

tk_anomaly_diagnostics

Automatic group-wise Anomaly Detection by STL Decomposition

Description

tk_anomaly_diagnostics() is the preprocessor for plot_anomaly_diagnostics(). It performs automatic anomaly detection for one or more time series groups.

Usage

```
tk_anomaly_diagnostics(
   .data,
   .date_var,
   .value,
   .frequency = "auto",
   .trend = "auto",
   .alpha = 0.05,
   .max_anomalies = 0.2,
   .message = TRUE
)
```

Arguments

.data	A tibble or data. frame with a time-based column
.date_var	A column containing either date or date-time values
.value	A column containing numeric values
.frequency	Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to tk_get_frequency().
.trend	Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().
.alpha	Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
.max_anomalies	The maximum percent of anomalies permitted to be identified.
.message	A boolean. If TRUE, will output information related to automatic frequency and trend selection (if applicable).

Details

The tk_anomaly_diagnostics() method for anomaly detection that implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

- 1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
- 2. .trend: Adjusts the trend window (t.window parameter from stats::st1() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an IQR Factor of 3 (3X). The *IQR Factor* = 0.15 / alpha (hence 3X with alpha = 0.05):

- To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
- Increase alpha to make it easier to be an outlier.
- The IQR outlier detection method is used in forecast::tsoutliers().
- A similar outlier detection method is used by Twitter's AnomalyDetection package.
- Both Twitter and Forecast tsoutliers methods have been implemented in Business Science's anomalize package.

Value

A tibble or data.frame with STL Decomposition Features (observed, season, trend, remainder, seasadj) and Anomaly Features (remainder_11, remainder_12, anomaly, recomposed_11, and recomposed_12)

References

- 1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol. 6, No. 1 (1990), pp. 3-73.
- 2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

• plot_anomaly_diagnostics(): Visual anomaly detection

Examples

```
library(dplyr)
walmart_sales_weekly %>%
  filter(id %in% c("1_1", "1_3")) %>%
  group_by(id) %>%
  tk_anomaly_diagnostics(Date, Weekly_Sales)
```

tk_augment_differences

Add many differenced columns to the data

Description

A handy function for adding multiple lagged difference values to a data frame. Works with dplyr groups too.

Usage

```
tk_augment_differences(
   .data,
   .value,
   .lags = 1,
   .differences = 1,
   .log = FALSE,
   .names = "auto"
)
```

Arguments

.data	A tibble.
.value	One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g. contains()) can be used to select multiple columns.
.lags	One or more lags for the difference(s)
.differences	The number of differences to apply.
.log	If TRUE, applies log-differences.
.names	A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.

Details

Benefits

This is a scalable function that is:

- Designed to work with grouped data using dplyr::group_by()
- Add multiple differences by adding a sequence of differences using the .lags argument (e.g. lags = 1:20)

tk_augment_fourier

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features
- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• diff_vec() - Underlying function that powers tk_augment_differences()

Examples

```
library(dplyr)
m4_monthly %>%
    group_by(id) %>%
    tk_augment_differences(value, .lags = 1:20)
```

tk_augment_fourier

Add many fourier series to the data

Description

A handy function for adding multiple fourier series to a data frame. Works with dplyr groups too.

Usage

```
tk_augment_fourier(.data, .date_var, .periods, .K = 1, .names = "auto")
```

Arguments

.data	A tibble.
.date_var	A date or date-time column used to calculate a fourier series
.periods	One or more periods for the fourier series
.K	The maximum number of fourier orders.
.names	A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns.

tk_augment_holiday 133

Details

Benefits

This is a scalable function that is:

- Designed to work with grouped data using dplyr::group_by()
- Add multiple differences by adding a sequence of differences using the .periods argument (e.g. lags = 1:20)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features
- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• fourier_vec() - Underlying function that powers tk_augment_fourier()

Examples

```
library(dplyr)
m4_monthly %>%
    group_by(id) %>%
    tk_augment_fourier(date, .periods = c(6, 12), .K = 2)
```

tk_augment_holiday

Add many holiday features to the data

Description

Quickly add the "holiday signature" - sets of holiday features that correspond to calendar dates. Works with dplyr groups too.

tk_augment_holiday

Usage

```
tk_augment_holiday_signature(
   .data,
   .date_var = NULL,
   .holiday_pattern = ".",
   .locale_set = c("all", "none", "World", "US", "CA", "GB", "FR", "IT", "JP", "CH", "DE"),
   .exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")
)
```

Arguments

"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

Details

tk_augment_holiday_signature adds the holiday signature features. See tk_get_holiday_signature() (powers the augment function) for a full description and examples for how to use.

1. Individual Holidays

These are **single holiday features** that can be filtered using a pattern. This helps in identifying which holidays are important to a machine learning model. This can be useful for example in **e-commerce initiatives** (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets

Locale-based holdiay sets are useful for **e-commerce initiatives** (e.g. sales during Christmas and Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holdiay sets are useful for identifying **non-working days.** Filter on an index to identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the holiday timeseries.

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features

tk_augment_lags 135

- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• tk_get_holiday_signature() - Underlying function that powers holiday feature generation

Examples

```
library(dplyr)
dates_in_2017_tbl <- tibble(index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day"))
# Non-working days in US due to Holidays using NYSE stock exchange calendar
dates_in_2017_tbl %>%
   tk_augment_holiday_signature(
       index,
       .holiday_pattern = "^$", # Returns nothing on purpose
       .locale_set = "none",
       .exchange_set = "NYSE")
# All holidays in US
dates_in_2017_tbl %>%
   tk_augment_holiday_signature(
       index,
       .holiday_pattern = "US_",
       .locale_set = "US",
       .exchange_set = "none")
# All holidays for World and Italy-specific Holidays
# - Note that Italy celebrates specific holidays in addition to many World Holidays
dates_in_2017_tbl %>%
   tk_augment_holiday_signature(
       index,
       .holiday_pattern = "(World)|(IT_)",
       .locale_set = c("World", "IT"),
       .exchange_set = "none")
```

tk_augment_lags

Add many lags to the data

Description

A handy function for adding multiple lagged columns to a data frame. Works with dplyr groups too.

tk_augment_lags

Usage

```
tk_augment_lags(.data, .value, .lags = 1, .names = "auto")
tk_augment_leads(.data, .value, .lags = -1, .names = "auto")
```

Arguments

.data A tibble.

.value One or more column(s) to have a transformation applied. Usage of tidyselect

functions (e.g. contains()) can be used to select multiple columns.

. lags One or more lags for the difference(s)

. names A vector of names for the new columns. Must be of same length as .lags.

Details

Lags vs Leads

A negative lag is considered a lead. The tk_augment_leads() function is identical to tk_augment_lags() with the exception that the automatic naming convetion (.names = 'auto') will convert column names with negative lags to leads.

Benefits

This is a scalable function that is:

- Designed to work with grouped data using dplyr::group_by()
- Add multiple lags by adding a sequence of lags using the .lags argument (e.g. .lags = 1:20)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features
- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• lag_vec() - Underlying function that powers tk_augment_lags()

tk_augment_slidify 137

Examples

```
library(dplyr)

# Lags
m4_monthly %>%
    group_by(id) %>%
    tk_augment_lags(contains("value"), .lags = 1:20)

# Leads
m4_monthly %>%
    group_by(id) %>%
    tk_augment_leads(value, .lags = 1:-20)
```

tk_augment_slidify

Add many rolling window calculations to the data

Description

Quickly use any function as a rolling function and apply to multiple .periods. Works with dplyr groups too.

Usage

```
tk_augment_slidify(
   .data,
   .value,
   .period,
   .f,
   ...,
   .align = c("center", "left", "right"),
   .partial = FALSE,
   .names = "auto"
)
```

Arguments

.data	A tibble.
.value	One or more column(s) to have a transformation applied. Usage of tidyselect functions (e.g. contains()) can be used to select multiple columns.
.period	One or more periods for the rolling window(s)
.f	A summary [function / formula],
	Optional arguments for the summary function
.align	Rolling functions generate .period - 1 fewer values than the incoming vector. Thus, the vector needs to be aligned. Select one of "center", "left", or "right".

tk_augment_slidify

partial .partial Should the moving window be allowed to return partial (incomplete) windows instead of NA values. Set to FALSE by default, but can be switched to

TRUE to remove NA's.

.names A vector of names for the new columns. Must be of same length as .period.

Default is "auto".

Details

tk_augment_slidify() scales the slidify_vec() function to multiple time series .periods. See slidify_vec() for examples and usage of the core function arguments.

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features
- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• slidify_vec() - The underlying function that powers tk_augment_slidify()

```
library(dplyr)
# Single Column | Multiple Rolling Windows
FANG %>%
    select(symbol, date, adjusted) %>%
    group_by(symbol) %>%
    tk_augment_slidify(
        .value = contains("adjust"),
        # Multiple rolling windows
        .period = c(10, 30, 60, 90),
                = mean,
        .partial = TRUE,
                = stringr::str_c("MA_", c(10, 30, 60, 90))
    ) %>%
    ungroup()
# Multiple Columns | Multiple Rolling Windows
FANG %>%
```

139 tk_augment_timeseries

```
select(symbol, date, adjusted, volume) %>%
group_by(symbol) %>%
tk_augment_slidify(
    .value = c(adjusted, volume),
    .period = c(10, 30, 60, 90),
            = mean,
    .partial = TRUE
) %>%
ungroup()
```

tk_augment_timeseries Add many time series features to the data

Description

Add many time series features to the data

Usage

```
tk_augment_timeseries_signature(.data, .date_var = NULL)
```

Arguments

A time-based tibble or time-series object. .data

For tibbles, a column containing either date or date-time values. If NULL, the .date_var

time-based column will interpret from the object (tibble, xts, zoo, etc).

Details

tk_augment_timeseries_signature() adds 25+ time series features including:

- Trend in Seconds Granularity: index.num
- Yearly Seasonality: Year, Month, Quarter
- Weekly Seasonality: Week of Month, Day of Month, Day of Week, and more
- Daily Seasonality: Hour, Minute, Second
- Weekly Cyclic Patterns: 2 weeks, 3 weeks, 4 weeks

Value

Returns a tibble object describing the timeseries.

tk_get_frequency

See Also

Augment Operations:

- tk_augment_timeseries_signature() Group-wise augmentation of timestamp features
- tk_augment_holiday_signature() Group-wise augmentation of holiday features
- tk_augment_slidify() Group-wise augmentation of rolling functions
- tk_augment_lags() Group-wise augmentation of lagged data
- tk_augment_differences() Group-wise augmentation of differenced data
- tk_augment_fourier() Group-wise augmentation of fourier series

Underlying Function:

• tk_get_timeseries_signature() - Returns timeseries features from an index

Examples

```
library(dplyr)
m4_daily %>%
    group_by(id) %>%
    tk_augment_timeseries_signature(date)
```

tk_get_frequency

Automatic frequency and trend calculation from a time series index

Description

Automatic frequency and trend calculation from a time series index

Usage

```
tk_get_frequency(idx, period = "auto", message = TRUE)
tk_get_trend(idx, period = "auto", message = TRUE)
```

Arguments

idx	A date or datetime index.
period	Either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10).
message	A boolean. If message = TRUE, the frequency or trend is output as a message along with the units in the scale of the data.

tk_get_frequency 141

Details

A *frequency* is loosely defined as the number of observations that comprise a cycle in a data set. The *trend* is loosely defined as time span that can be aggregated across to visualize the central tendency of the data. It's often easiest to think of frequency and trend in terms of the time-based units that the data is already in. **This is what** tk_get_frequency() **and** time_trend() **enable: using time-based periods to define the frequency or trend.**

Frequency:

As an example, a weekly cycle is often 5-days (for working days) or 7-days (for calendar days). Rather than specify a frequency of 5 or 7, the user can specify period = "1 week", and tk_get_frequency() will detect the scale of the time series and return 5 or 7 based on the actual data.

The period argument has three basic options for returning a frequency. Options include:

- "auto": A target frequency is determined using a pre-defined template (see template below).
- time-based duration: (e.g. "1 week" or "2 quarters" per cycle)
- numeric number of observations: (e.g. 5 for 5 observations per cycle)

When period = "auto", the tk_time_scale_template() is used to calculate the frequency.

Trend:

As an example, the trend of daily data is often best aggregated by evaluating the moving average over a quarter or a month span. Rather than specify the number of days in a quarter or month, the user can specify "1 quarter" or "1 month", and the time_trend() function will return the correct number of observations per trend cycle. In addition, there is an option, period = "auto", to auto-detect an appropriate trend span depending on the data. The template is used to define the appropriate trend span.

Time Scale Template

The tk_time_scale_template() is a Look-Up Table used by the trend and period to find the appropriate time scale. It contains three features: time_scale, frequency, and trend.

The algorithm will inspect the scale of the time series and select the best frequency or trend that matches the scale and number of observations per target frequency. A frequency is then chosen on be the best match.

The predefined template is stored in a function tk_time_scale_template(). You can modify the template with set_tk_time_scale_template().

Value

Returns a scalar numeric value indicating the number of observations in the frequency or trend span.

See Also

• Time Scale Template Modifiers: get_tk_time_scale_template(), set_tk_time_scale_template()

```
library(dplyr)
idx FB <- FANG %>%
```

tk_get_holiday

```
filter(symbol == "FB") %>%
   pull(date)

# Automated Frequency Calculation
tk_get_frequency(idx_FB, period = "auto")

# Automated Trend Calculation
tk_get_trend(idx_FB, period = "auto")

# Manually Override Trend
tk_get_trend(idx_FB, period = "1 year")
```

tk_get_holiday

Get holiday features from a time-series index

Description

Get holiday features from a time-series index

Usage

```
tk_get_holiday_signature(
   idx,
   holiday_pattern = ".",
   locale_set = c("all", "none", "World", "US", "CA", "GB", "FR", "IT", "JP", "CH", "DE"),
   exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")
)

tk_get_holidays_by_year(years = year(today()))
```

Arguments

idx A time-series index that is a vector of dates or datetimes.

holiday_pattern

A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",

"CA", "GB", "FR", "IT", "JP", "CH", "DE".

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",

"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

years One or more years to collect holidays for.

Details

Feature engineering holidays can help identify critical patterns for machine learning algorithms. tk_get_holiday_signature() helps by providing feature sets for 3 types of features:

1. Individual Holidays

tk_get_holiday 143

These are **single holiday features** that can be filtered using a pattern. This helps in identifying which holidays are important to a machine learning model. This can be useful for example in **e-commerce initiatives** (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets

Locale-based holdiay sets are useful for **e-commerce initiatives** (e.g. sales during Christmas and Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets

Exchange-based holdiny sets are useful for identifying **non-working days.** Filter on an index to identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the timeseries holidays.

See Also

- tk_augment_holiday_signature() A quick way to add holiday features to a data.frame
- step_holiday_signature() Preprocessing and feature engineering steps for use with recipes

```
library(dplyr)
library(stringr)
# Works with time-based tibbles
idx <- tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")
# --- BASIC USAGE ----
tk_get_holiday_signature(idx)
# ---- FILTERING WITH PATTERNS & SETS ----
# List available holidays - see patterns
tk_get_holidays_by_year(2020) %>%
    filter(holiday_name %>% str_detect("US_"))
# Filter using holiday patterns
# - Get New Years, Christmas and Thanksgiving Features in US
tk_get_holiday_signature(
    idx,
    holiday_pattern = "(US_NewYears)|(US_Christmas)|(US_Thanks)",
   locale_set = "none",
    exchange_set = "none")
# ---- APPLYING FILTERS ----
# Filter with locale sets - Signals all holidays in a locale
tk_get_holiday_signature(
    idx,
```

144 tk_get_timeseries

```
holiday_pattern = "$^", # Matches nothing on purpose
locale_set = "US",
exchange_set = "none")

# Filter with exchange sets - Signals Common Non-Business Days
tk_get_holiday_signature(
   idx,
   holiday_pattern = "$^", # Matches nothing on purpose
locale_set = "none",
   exchange_set = "NYSE")
```

tk_get_timeseries

Get date features from a time-series index

Description

Get date features from a time-series index

Usage

```
tk_get_timeseries_signature(idx)
tk_get_timeseries_summary(idx)
```

Arguments

idx

A time-series index that is a vector of dates or datetimes.

Details

tk_get_timeseries_signature decomposes the timeseries into commonly needed features such as numeric value, differences, year, month, day, day of week, day of month, day of year, hour, minute, second.

tk_get_timeseries_summary returns the summary returns the start, end, units, scale, and a "summary" of the timeseries differences in seconds including the minimum, 1st quartile, median, mean, 3rd quartile, and maximum frequency. The timeseries differences give the user a better picture of the index frequency so the user can understand the level of regularity or irregularity. A perfectly regular time series will have equal values in seconds for each metric. However, this is not often the case.

Important Note: These functions only work with time-based indexes in datetime, date, yearmon, and yearqtr values. Regularized dates cannot be decomposed.

Value

Returns a tibble object describing the timeseries.

See Also

```
tk_index(), tk_augment_timeseries_signature(), tk_make_future_timeseries()
```

Examples

```
library(dplyr)
library(lubridate)
library(zoo)
# Works with time-based tibbles
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
FB_idx <- tk_index(FB_tbl)</pre>
tk_get_timeseries_signature(FB_idx)
tk_get_timeseries_summary(FB_idx)
# Works with dates in any periodicity
idx_weekly <- seq.Date(from = lubridate::ymd("2016-01-01"), by = 'week', length.out = 6)
tk_get_timeseries_signature(idx_weekly)
tk_get_timeseries_summary(idx_weekly)
# Works with zoo yearmon and yearqtr classes
idx_yearmon <- seq.Date(from = lubridate::ymd("2016-01-01"),</pre>
                                 = "month",
                        length.out = 12) %>%
    zoo::as.yearmon()
tk_get_timeseries_signature(idx_yearmon)
tk_get_timeseries_summary(idx_yearmon)
```

```
tk_get_timeseries_unit_frequency
```

Get the timeseries unit frequency for the primary time scales

Description

Get the timeseries unit frequency for the primary time scales

Usage

```
tk_get_timeseries_unit_frequency()
```

Value

tk_get_timeseries_unit_frequency returns a tibble containing the timeseries frequencies in seconds for the primary time scales including "sec", "min", "hour", "day", "week", "month", "quarter", and "year".

Examples

```
tk_get_timeseries_unit_frequency()
```

```
tk_get_timeseries_variables
```

Get date or datetime variables (column names)

Description

Get date or datetime variables (column names)

Usage

```
tk_get_timeseries_variables(data)
```

Arguments

data

An object of class data. frame

Details

tk_get_timeseries_variables returns the column names of date or datetime variables in a data frame. Classes that meet criteria for return include those that inherit POSIXt, Date, zoo::yearmon, zoo::yearqtr. Function was adapted from padr:::get_date_variables(). See padr helpers.R

Value

tk_get_timeseries_variables returns a vector containing column names of date-like classes.

```
library(dplyr)

FANG %>%
    tk_get_timeseries_variables()
```

tk_index 147

tk_index Extract an index of date or datetime from time series objects, reforecasts	nodels,
---	---------

Description

Extract an index of date or datetime from time series objects, models, forecasts

Usage

```
tk_index(data, timetk_idx = FALSE, silent = FALSE)
has_timetk_idx(data)
```

Arguments

data A time-based tibble, time-series object, time-series model, or forecast object.

 ${\tt timetk_idx} \qquad \text{ If } {\tt timetk_idx} \text{ is } {\tt TRUE} \text{ a } {\tt timetk} \text{ time-based } {\tt index} \text{ attribute } {\tt is} \text{ attempted to be}$

returned. If FALSE the default index is returned. See discussion below for further

details.

silent Used to toggle printing of messages and warnings.

Details

tk_index() is used to extract the date or datetime index from various time series objects, models and forecasts. The method can be used on tbl, xts, zoo, zooreg, and ts objects. The method can additionally be used on forecast objects and a number of objects generated by modeling functions such as Arima, ets, and HoltWinters classes to get the index of the underlying data.

The boolean timetk_idx argument is applicable to regularized time series objects such as ts and zooreg classes that have both a regularized index and *potentially* a "timetk index" (a time-based attribute). When set to FALSE the regularized index is returned. When set to TRUE the time-based timetk index is returned *if present*.

has_timetk_idx() is used to determine if the object has a "timetk index" attribute and can thus benefit from the tk_index(timetk_idx = TRUE). TRUE indicates the "timetk index" attribute is present. FALSE indicates the "timetk index" attribute is not present. If FALSE, the tk_index() function will return the default index for the data type.

Important Note: To gain the benefit of timetk_idx the time series must have a timetk index. Use has_timetk_idx to determine if the object has a timetk index. This is particularly important for ts objects, which by default do not contain a time-based index and therefore must be coerced from time-based objects such as tbl, xts, or zoo using the tk_ts() function in order to get the "timetk index" attribute. Refer to tk_ts() for creating persistent date / datetime index during coercion to ts.

Value

Returns a vector of date or date times

See Also

```
tk_ts(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()
```

Examples

```
# Create time-based tibble
data_tbl <- tibble::tibble(
    date = seq.Date(from = as.Date("2000-01-01"), by = 1, length.out = 5),
    x = rnorm(5) * 10,
    y = 5:1
)
tk_index(data_tbl) # Returns time-based index vector

# Coerce to ts using tk_ts(): Preserves time-basis
data_ts <- tk_ts(data_tbl)
tk_index(data_ts, timetk_idx = FALSE) # Returns regularized index
tk_index(data_ts, timetk_idx = TRUE) # Returns original time-based index vector

# Coercing back to tbl
tk_tbl(data_ts, timetk_idx = FALSE) # Returns regularized tbl
tk_tbl(data_ts, timetk_idx = TRUE) # Returns time-based tbl</pre>
```

tk_make_future_timeseries

Make future time series from existing

Description

Make future time series from existing

Usage

```
tk_make_future_timeseries(
   idx,
   length_out,
   inspect_weekdays = FALSE,
   inspect_months = FALSE,
   skip_values = NULL,
   insert_values = NULL,
   n_future = NULL
)
```

Arguments

idx A vector of dates

length_out Number of future observations. Can be numeric number or a phrase like "1

year".

inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.

weekends) should be excluded from the future dates. Default is FALSE.

inspect_months Uses a logistic regression algorithm to inspect whether certain days of months

(e.g. last two weeks of year or seasonal days) should be excluded from the future

dates. Default is FALSE.

skip_values A vector of same class as idx of timeseries values to skip.

insert_values A vector of same class as idx of timeseries values to insert.

n_future (DEPRECATED) Number of future observations. Can be numeric number or a

phrase like "1 year".

Details

Future Sequences

tk_make_future_timeseries returns a time series based on the input index frequency and attributes.

Specifying Length of Future Observations

The argument length_out determines how many future index observations to compute. It can be specified as:

- A numeric value the number of future observations to return.
 - The number of observations returned is *always* equal to the value the user inputs.
 - The end date can vary based on the number of timestamps chosen.
- A time-based phrase The duration into the future to include (e.g. "6 months" or "30 minutes").
 - The *duration* defines the *end date* for observations.
 - The **end date will not change** and those timestamps that fall within the end date will be returned (e.g. a quarterly time series will return 4 quarters if length_out = "1 year").
 - The number of observations will vary to fit within the end date.

Weekday and Month Inspection

The inspect_weekdays and inspect_months arguments apply to "daily" (scale = "day") data (refer to tk_get_timeseries_summary() to get the index scale).

- The inspect_weekdays argument is useful in determining missing days of the week that occur on a weekly frequency such as every week, every other week, and so on. It's recommended to have at least 60 days to use this option.
- The inspect_months argument is useful in determining missing days of the month, quarter or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.

Skipping / Inserting Values

The skip_values and insert_values arguments can be used to remove and add values into the series of future times. The values must be the same format as the idx class.

- The skip_values argument useful for passing holidays or special index values that should be excluded from the future time series.
- The insert_values argument is useful for adding values back that the algorithm may have excluded.

Value

A vector containing future index of the same class as the incoming index idx

See Also

- Making Time Series: tk_make_timeseries()
- Working with Holidays & Weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(), tk_make_weekday_sequence()
- Working with Timestamp Index: tk_index(), tk_get_timeseries_summary(), tk_get_timeseries_signature()

```
library(dplyr)
# Basic example - By 3 seconds
idx <- tk_make_timeseries("2016-01-01 00:00:00", by = "3 sec", length_out = 3)
# Make next three timestamps in series
idx %>% tk_make_future_timeseries(length_out = 3)
# Make next 6 seconds of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "6 sec")
# Basic Example - By 1 Month
idx \leftarrow tk_make_timeseries("2016-01-01", by = "1 month",
                          length_out = "12 months")
idx
# Make 12 months of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "12 months")
# --- APPLICATION ---
# - Combine holiday sequences with future sequences
# Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
```

tk_make_holiday_sequence

Make daily Holiday and Weekend date sequences

Description

Make daily Holiday and Weekend date sequences

Usage

```
tk_make_holiday_sequence(
  start_date,
  end_date,
  calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
  skip_values = NULL,
  insert_values = NULL
)
tk_make_weekend_sequence(start_date, end_date)
tk_make_weekday_sequence(
  start_date,
  end_date,
  remove_weekends = TRUE,
  remove_holidays = FALSE,
  calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
  skip_values = NULL,
  insert_values = NULL
)
```

Arguments

start_date Used to define the starting date for date sequence generation. Provide in "YYYY-

MM-DD" format.

end_date Used to define the ending date for date sequence generation. Provide in "YYYY-

MM-DD" format.

calendar The calendar to be used in Date Sequence calculations for Holidays from the

timeDate package. Acceptable values are: "NYSE", "LONDON", "NERC", "TSX",

"ZURICH".

skip_values A daily date sequence to skip insert_values A daily date sequence to insert

remove_weekends

A logical value indicating whether or not to remove weekends (Saturday and

Sunday) from the date sequence

remove_holidays

A logical value indicating whether or not to remove common holidays from the

date sequence

Details

Start and End Date Specification

- Accept shorthand notation (i.e. tk_make_timeseries() specifications apply)
- Only available in Daily Periods.

Holiday Sequences

tk_make_holiday_sequence() is a wrapper for various holiday calendars from the timeDate package, making it easy to generate holiday sequences for common business calendars:

• New York Stock Exchange: calendar = "NYSE"

• Londo Stock Exchange: "LONDON"

• North American Reliability Council: "NERC"

• Toronto Stock Exchange: "TSX"

• Zurich Stock Exchange: "ZURICH"

Weekend and Weekday Sequences

These simply populate

Value

A vector containing future dates

See Also

- Intelligent date or date-time sequence creation: tk_make_timeseries()
- Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(), tk_make_weekday_sequence()
- Make future index from existing: tk_make_future_timeseries()

```
library(dplyr)
# Set max.print to 50
options_old <- options()$max.print</pre>
options(max.print = 50)
# ---- HOLIDAYS & WEEKENDS ----
# Business Holiday Sequence
tk_make_holiday_sequence("2017-01-01", "2017-12-31", calendar = "NYSE")
tk_make_holiday_sequence("2017", calendar = "NYSE") # Same thing as above (just shorter)
# Weekday Sequence
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)
# Weekday Sequence + Removing Business Holidays
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)
# ---- COMBINE HOLIDAYS WITH MAKE FUTURE TIMESERIES FROM EXISTING ----
# - A common machine learning application is creating a future time series data set
   from an existing
# Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
holidays <- tk_make_holiday_sequence(</pre>
    start_date = "2016",
    end_date = "2017",
   calendar = "NYSE")
weekends <- tk_make_weekend_sequence(
    start_date = "2016",
    end_date = "2017")
# Remove holidays and weekends with skip_values
# We could also remove weekends with inspect_weekdays = TRUE
FB_tbl %>%
    tk_index() %>%
    tk_make_future_timeseries(length_out
                                            = 366,
                              skip_values
                                              = c(holidays, weekends))
options(max.print = options_old)
```

Description

Improves on the seq.Date() and seq.POSIXt() functions by simplifying into 1 function tk_make_timeseries(). Intelligently handles character dates and logical assumptions based on user inputs.

Usage

```
tk_make_timeseries(
   start_date,
   end_date,
   by,
   length_out = NULL,
   include_endpoints = TRUE,
   skip_values = NULL,
   insert_values = NULL)
```

Arguments

	start_date	Used to define the starting date for date sequence generation. Provide in "YYYY-MM-DD" format.
	end_date	Used to define the ending date for date sequence generation. Provide in "YYYY-MM-DD" format.
	by	A character string, containing one of "sec", "min", "hour", "day", "week", "month", "quarter" or "year". You can create regularly spaced sequences using phrases like by = "10 min". See Details.
	length_out	Optional length of the sequence. Can be used instead of one of: start_date, end_date, or by. Can be specified as a number or a time-based phrase.
include_endpoints		
		Logical. Whether or not to keep the last value when length_out is a time-based phrase. Default is TRUE (keep last value).
	skip_values	A sequence to skip
	insert_values	A sequence to insert

Details

The tk_make_timeseries() function handles both date and date-time sequences automatically.

- Parses date and date times from character
- Intelligently guesses the sequence desired based on arguments provided
- · Handles spacing intelligently
- When both by and length_out are missing, guesses either second or day sequences
- Can skip and insert values if needed.

Start and End Date Specification

Start and end dates can be specified in reduced time-based phrases:

- start_date = "2014": Is converted to "2014-01-01" (start of period)
- end_date = "2014": Is converted to "2014-12-31" (end of period)
- start_date = "2014-03": Is converted to "2014-03-01" (start of period)
- end_date = "2014-03": Is converted to "2014-03-31" (end of period)

A similar process can be used for date-times.

By: Daily Sequences

Make a daily sequence with tk_make_timeseries(by). Examples:

- Every Day: by = "day"
- Every 2-Weeks: by = "2 weeks"
- Every 6-months: by = "6 months"

If missing, will guess by = "day"

By: Sub-Daily Sequences

Make a sub-daily sequence with tk_make_timeseries(by). Examples:

- Every minute: by = "min"
- Every 30-seconds: by = "30 sec"
- Every 2-hours: by = "2 hours

If missing, will guess by = "sec" if the start or end date is a date-time specification.

Length Out

The length_out can be specified by number of observation or complex time-based expressions. The following examples are all possible.

- length_out = 12 Creates 12 evenly spaced observations.
- length_out = "12 months" Adjusts the end date so it falls on the 12th month.

Include Endpoint

Sometimes the last date is not desired. For example, if the user specifies length_out = 12 months, the user may want the last value to be the 12th month and not the 13th. Just toggle, include_endpoint = FALSE to obtain this behavior.

Skip / Insert Timestamps

Skips and inserts are performed after the sequence is generated. This means that if you use the length_out parameter, the length may differ than the length_out.

Value

A vector containing date or date-times

See Also

- Intelligent date or date-time sequence creation: tk_make_timeseries()
- Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(), tk_make_weekday_sequence()
- Make future index from existing: tk_make_future_timeseries()

```
library(dplyr)
# Set max.print to 50
options_old <- options()$max.print</pre>
options(max.print = 50)
# ---- DATE ----
# Start + End, Guesses by = "day"
tk_make_timeseries("2017-01-01", "2017-12-31")
# Just Start
tk_make_timeseries("2017") # Same result
# Only dates in February, 2017
tk_make_timeseries("2017-02")
# Start + Length Out, Guesses by = "day"
tk_make_timeseries("2012", length_out = 6) # Guesses by = "day"
# Start + By + Length Out, Spacing 6 observations by monthly interval
tk_make_timeseries("2012", by = "1 month", length_out = 6)
# Start + By + Length Out, Phrase "1 year 6 months"
tk_make_timeseries("2012", by = "1 month",
                   length_out = "1 year 6 months", include_endpoints = FALSE)
# Going in Reverse, End + Length Out
tk_make_timeseries(end_date = "2012-01-01", by = "1 month",
                   length_out = "1 year 6 months", include_endpoints = FALSE)
# ---- DATE-TIME ----
# Start + End, Guesses by second
tk_make_timeseries("2016-01-01 01:01:02", "2016-01-01 01:01:04")
# Date-Time Sequence - By 10 Minutes
# - Converts to date-time automatically & applies 10-min interval
tk_make_timeseries("2017-01-01", "2017-01-02", by = "10 min")
# --- REMOVE / INCLUDE ENDPOINTS ----
# Last value in this case is desired
tk_make_timeseries("2017-01-01", by = "30 min", length_out = "6 hours")
# Last value in monthly case is not wanted
tk_make_timeseries("2012-01-01", by = "1 month",
                   length_out = "12 months",
                   include_endpoints = FALSE) # Removes unnecessary last value
```

```
# ---- SKIP & INSERT VALUES ----
tk_make_timeseries(
   "2011-01-01", length_out = 5,
   skip_values = "2011-01-05",
   insert_values = "2011-01-06"
)
options(max.print = options_old)
```

tk_seasonal_diagnostics

Group-wise Seasonality Data Preparation

Description

tk_seasonal_diagnostics() is the preprocessor for plot_seasonal_diagnostics(). It helps by automating feature collection for time series seasonality analysis.

Usage

```
tk_seasonal_diagnostics(.data, .date_var, .value, .feature_set = "auto")
```

Arguments

- .data A tibble or data.frame with a time-based column
- .date_var A column containing either date or date-time values
- . value A column containing numeric values
- . feature_set One or multiple selections to analyze for seasonality. Choices include:
 - "auto" Automatically selects features based on the time stamps and length of the series.
 - "second" Good for analyzing seasonality by second of each minute.
 - "minute" Good for analyzing seasonality by minute of the hour
 - "hour" Good for analyzing seasonality by hour of the day
 - "wday.lbl" Labeled weekdays. Good for analyzing seasonality by day of the week.
 - "week" Good for analyzing seasonality by week of the year.
 - "month.lbl" Labeled months. Good for analyzing seasonality by month of the year.
 - "quarter" Good for analyzing seasonality by quarter of the year
 - "year" Good for analyzing seasonality over multiple years.

Details

Automatic Feature Selection

Internal calculations are performed to detect a sub-range of features to include useing the following logic:

- The minimum feature is selected based on the median difference between consecutive timestamps
- The maximum feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features: "hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames

This function respects grouped data. frame and tibbles that were made with dplyr::group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the sub-groups. This means extra features are returned even though they may be meaningless for some of the groups.

Transformations

The .value parameter respects transformations (e.g. .value = log(sales)).

Value

A tibble or data. frame with seasonal features

```
library(dplyr)
# ---- GROUPED EXAMPLES ----
# Hourly Data
m4_hourly %>%
    group_by(id) %>%
    tk_seasonal_diagnostics(date, value)
# Monthly Data
m4_monthly %>%
   group_by(id) %>%
    tk_seasonal_diagnostics(date, value)
# ---- TRANSFORMATION ----
m4_weekly %>%
    group_by(id) %>%
    tk_seasonal_diagnostics(date, log(value))
# ---- CUSTOM FEATURE SELECTION ----
m4_hourly %>%
   group_by(id) %>%
```

tk_stl_diagnostics 159

```
tk_seasonal_diagnostics(date, value, .feature_set = c("hour", "week"))
```

tk_stl_diagnostics

Group-wise STL Decomposition (Season, Trend, Remainder)

Description

tk_stl_diagnostics() is the preprocessor for plot_stl_diagnostics(). It helps by automating frequency and trend selection.

Usage

```
tk_stl_diagnostics(
   .data,
   .date_var,
   .value,
   .frequency = "auto",
   .trend = "auto",
   .message = TRUE
)
```

Arguments

.data A tibble or data.frame with a time-based column .date_var A column containing either date or date-time values

.value A column containing numeric values

. frequency Controls the seasonal adjustment (removal of seasonality). Input can be either

"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-

vations per frequency (e.g. 10). Refer to tk_get_frequency().

. trend Controls the trend component. For STL, trend controls the sensitivity of the

lowess smoother, which is used to remove the remainder.

.message A boolean. If TRUE, will output information related to automatic frequency and

trend selection (if applicable).

Details

The tk_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The function is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl(). The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder".

Frequency & Trend Selection

The user can control two parameters: . frequency and . trend.

- The .frequency parameter adjusts the "season" component that is removed from the "observed" values.
- 2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based on the scale of the time series.

Value

A tibble or data.frame with Observed, Season, Trend, Remainder, and Seasonally-Adjusted features

Examples

```
library(dplyr)

# ---- GROUPS & TRANSFORMATION ----
m4_daily %>%
    group_by(id) %>%
    tk_stl_diagnostics(date, box_cox_vec(value))

# ---- CUSTOM TREND ----
m4_weekly %>%
    group_by(id) %>%
    tk_stl_diagnostics(date, box_cox_vec(value), .trend = "2 quarters")
```

tk_summary_diagnostics

Group-wise Time Series Summary

Description

tk_summary_diagnostics() returns the time series summary from one or more timeseries groups in a tibble.

Usage

```
tk_summary_diagnostics(.data, .date_var)
```

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values. If missing, attempts to

auto-detect the date or date-time column.

tk_tbl 161

Details

Applies tk_get_timeseries_summary() group-wise returning the summary of one or more time series groups.

- Respects dplyr groups
- Returns the time series summary from a time-based feature.

Value

A tibble or data. frame with timeseries summary features

Examples

```
library(dplyr)
# ---- NON-GROUPED EXAMPLES ----
# Monthly Data
m4_monthly %>%
    filter(id == "M750") %>%
    tk_summary_diagnostics()
# ---- GROUPED EXAMPLES ----
# Monthly Data
m4_monthly %>%
    group_by(id) %>%
    tk_summary_diagnostics()
```

tk_tbl

Coerce time-series objects to tibble.

Description

Coerce time-series objects to tibble.

Usage

```
tk_tbl(
  data,
  preserve_index = TRUE,
  rename_index = "index",
  timetk_idx = FALSE,
  silent = FALSE,
  ...
)
```

162 tk_tbl

Arguments

data A time-series object.

preserve_index Attempts to preserve a time series index. Default is TRUE.

rename_index Enables the index column to be renamed.

timetk_idx Used to return a date / datetime index for regularized objects that contain a timetk "index" attribute. Refer to tk_index() for more information on returning index information from regularized timeseries objects (i.e. ts).

silent Used to toggle printing of messages and warnings.

Details

. . .

tk_tbl is designed to coerce time series objects (e.g. xts, zoo, ts, timeSeries, etc) to tibble objects. The main advantage is that the function keeps the date / date-time information from the underlying time-series object.

Additional parameters passed to the tibble::as_tibble() function.

When preserve_index = TRUE is specified, a new column, index, is created during object coercion, and the function attempts to preserve the date or date-time information. The date / date-time column name can be changed using the rename_index argument.

The timetk_idx argument is applicable when coercing ts objects that were created using tk_ts() from an object that had a time base (e.g. tbl, xts, zoo). Setting timetk_idx = TRUE enables returning the timetk "index" attribute if present, which is the original (non-regularized) time-based index.

Value

Returns a tibble object.

See Also

```
tk_xts(), tk_zoo(), tk_zooreg(), tk_ts()
```

```
library(dplyr)

data_tbl <- tibble(
    date = seq.Date(from = as.Date("2010-01-01"), by = 1, length.out = 5),
    x = seq(100, 120, by = 5)
)

### ts to tibble: Comparison between as.data.frame() and tk_tbl()
data_ts <- tk_ts(data_tbl, start = c(2010,1), freq = 365)

# No index
as.data.frame(data_ts)

# Defualt index returned is regularized numeric index</pre>
```

```
tk_tbl(data_ts)
# Original date index returned (Only possible if original data has time-based index)
tk_tbl(data_ts, timetk_idx = TRUE)
### xts to tibble: Comparison between as.data.frame() and tk_tbl()
data_xts <- tk_xts(data_tbl)</pre>
# Dates are character class stored in row names
as.data.frame(data_xts)
# Dates are appropriate date class and within the data frame
tk_tbl(data_xts)
### zooreg to tibble: Comparison between as.data.frame() and tk_tbl()
data_zooreg <- tk_zooreg(1:8, start = zoo::yearqtr(2000), frequency = 4)</pre>
# Dates are character class stored in row names
as.data.frame(data_zooreg)
# Dates are appropriate zoo yearqtr class within the data frame
tk_tbl(data_zooreg)
### zoo to tibble: Comparison between as.data.frame() and tk_tbl()
data_zoo <- zoo::zoo(1:12, zoo::yearmon(2016 + seq(0, 11)/12))
# Dates are character class stored in row names
as.data.frame(data_zoo)
# Dates are appropriate zoo yearmon class within the data frame
tk_tbl(data_zoo)
```

```
tk_time_series_cv_plan
```

Time Series Resample Plan Data Preparation

Description

The tk_time_series_cv_plan() function provides a simple interface to prepare a time series resample specification (rset) of either rolling_origin or time_series_cv class.

Usage

```
tk_time_series_cv_plan(.data)
```

Arguments

.data

A time series resample specification of of either rolling_origin or time_series_cv class.

Details

Resample Set

A resample set is an output of the timetk::time_series_cv() function or the rsample::rolling_origin() function.

Value

A tibble containing the time series crossvalidation plan.

See Also

- time_series_cv() and rsample::rolling_origin() Functions used to create time series resample specifications.
- plot_time_series_cv_plan() The plotting function used for visualizing the time series resample plan.

Examples

```
library(dplyr)
library(rsample)

FB_tbl <- FANG %>%
    filter(symbol == "FB") %>%
    select(symbol, date, adjusted)

resample_spec <- time_series_cv(
    FB_tbl,
    initial = 150, assess = 50, skip = 50,
    cumulative = FALSE,
    lag = 30,
    slice_limit = n())

resample_spec %>% tk_time_series_cv_plan()
```

 tk_{t}

Coerce time series objects and tibbles with date/date-time columns to ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

tk_ts 165

Usage

```
tk_ts(
  data,
  select = NULL,
  start = 1,
  end = numeric(),
  frequency = 1,
  deltat = 1,
  ts.eps = getOption("ts.eps"),
  silent = FALSE
tk_ts_(
  data,
  select = NULL,
  start = 1,
  end = numeric(),
  frequency = 1,
  deltat = 1,
  ts.eps = getOption("ts.eps"),
  silent = FALSE
)
```

Arguments

data	A time-based tibble or time-series object.
select	Applicable to tibbles and data frames only . The column or set of columns to be coerced to ts class.
start	the time of the first observation. Either a single number or a vector of two numbers (the second of which is an integer), which specify a natural time unit and a (1-based) number of samples into the time unit. See the examples for the use of the second form.
end	the time of the last observation, specified in the same way as start.
frequency	the number of observations per unit of time.
deltat	the fraction of the sampling period between successive observations; e.g., 1/12 for monthly data. Only one of frequency or deltat should be provided.
ts.eps	time series comparison tolerance. Frequencies are considered equal if their absolute difference is less than ts.eps.
silent	Used to toggle printing of messages and warnings.

Details

tk_ts() is a wrapper for stats::ts() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to ts class objects. There are two main advantages:

1. Non-numeric columns get removed instead of being populated by NA's.

166 tk_ts

2. The returned ts object retains a "timetk index" (and various other attributes) if detected. The "timetk index" can be used to coerce between tbl, xts, zoo, and ts data types.

The select argument is used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. At a minimum, a frequency and a start should be specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using stats::ts().

tk_ts_ is a nonstandard evaluation method.

Value

Returns a ts object.

See Also

```
tk_index(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()
```

```
library(dplyr)
### tibble to ts: Comparison between tk_ts() and stats::ts()
data_tbl <- tibble::tibble(</pre>
   date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
      = rep("chr values", 5),
         = cumsum(1:5),
         = cumsum(11:15) * rnorm(1))
# as.ts: Character columns introduce NA's; Result does not retain index
stats::ts(data_tbl[,-1], start = 2016)
# tk_ts: Only numeric columns get coerced; Result retains index in numeric format
data_ts <- tk_ts(data_tbl, start = 2016)</pre>
data_ts
# timetk index
tk_index(data_ts, timetk_idx = FALSE) # Regularized index returned
tk_index(data_ts, timetk_idx = TRUE) # Original date index returned
# Coerce back to tibble
data_ts %>% tk_tbl(timetk_idx = TRUE)
### Using select
tk_ts(data_tbl, select = y)
### NSE: Enables programming
select <- "y"
tk_ts_(data_tbl, select = select)
```

167 tk_tsfeatures

tk_tsfeatures

Time series feature matrix (Tidy)

Description

tk_tsfeatures() is a tidyverse compliant wrapper for tsfeatures::tsfeatures(). The function computes a matrix of time series features that describes the various time series. It's designed for groupwise analysis using dplyr groups.

Usage

```
tk_tsfeatures(
  .data,
  .date_var,
  .value,
  .period = "auto",
  .features = c("frequency", "stl_features", "entropy", "acf_features"),
  .scale = TRUE,
  .trim = FALSE,
  .trim_amount = 0.1,
  .parallel = FALSE,
  .na_action = na.pass,
  .prefix = "ts_",
  .silent = TRUE,
)
```

Arguments

A tibble or data. frame with a time-based column .data

.date_var A column containing either date or date-time values

A column containing numeric values .value

The periodicity (frequency) of the time series data. Values can be provided as .period follows:

- "auto" (default) Calculates using tk_get_frequency().
- "2 weeks": Would calculate the median number of observations in a 2-week window.
- 7 (numeric): Would interpret the ts frequency as 7 observations per cycle (common for weekly data)

.features

Passed to features in the underlying tsfeatures() function. A vector of function names that represent a feature aggregation function. Examples:

- 1. Use one of the function names from tsfeatures R package e.g. ("lumpiness", "stl_features").
- 2. Use a function name (e.g. "mean" or "median")
- 3. Create your own function and provide the function name

tk_tsfeatures

. scale If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.

. trim If TRUE, time series are trimmed by trim_amount before features are computed.

Values larger than trim_amount in absolute value are set to NA.

.trim_amount Default level of trimming if trim==TRUE. Default: 0.1.

.parallel If TRUE, multiple cores (or multiple sessions) will be used. This only speeds

things up when there are a large number of time series.

When .parallel = TRUE, the multiprocess = future::multisession. This

can be adjusted by setting multiprocess parameter. See the tsfeatures::tsfeatures()

function for mor details.

.na_action A function to handle missing values. Use na.interp to estimate missing values.

.prefix A prefix to prefix the feature columns. Default: "ts_".

. silent Whether or not to show messages and warnings.

... Other arguments get passed to the feature functions.

Details

The timetk::tk_tsfeatures() function implements the tsfeatures package for computing aggregated feature matrix for time series that is useful in many types of analysis such as clustering time series.

The timetk version ports the tsfeatures::tsfeatures() function to a tidyverse-compliant format that uses a tidy data frame containing grouping columns (optional), a date column, and a value column. Other columns are ignored.

It then becomes easy to summarize each time series by group-wise application of .features, which are simply functions that evaluate a time series and return single aggregated value. (Example: "mean" would return the mean of the time series (note that values are scaled to mean 1 and sd 0 first))

Function Internals:

Internally, the time series are converted to ts class using tk_ts(.period) where the period is the frequency of the time series. Values can be provided for .period, which will be used prior to convertion to ts class.

The function then leverages tsfeatures::tsfeatures() to compute the feature matrix of summarized feature values.

Value

A tibble or data. frame with aggregated features that describe each time series.

References

1. Rob Hyndman, Yanfei Kang, Pablo Montero-Manso, Thiyanga Talagala, Earo Wang, Yangzhuoran Yang, Mitchell O'Hara-Wild: tsfeatures R package

tk_xts 169

Examples

```
library(dplyr)

walmart_sales_weekly %>%
    group_by(id) %>%
    tk_tsfeatures(
        .date_var = Date,
        .value = Weekly_Sales,
        .period = 52,
        .features = c("frequency", "stl_features", "entropy", "acf_features", "mean"),
        .scale = TRUE,
        .prefix = "ts_"
)
```

 tk_xts

Coerce time series objects and tibbles with date/date-time columns to xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

```
tk_xts(data, select = NULL, date_var = NULL, silent = FALSE, ...)
tk_xts_(data, select = NULL, date_var = NULL, silent = FALSE, ...)
```

Arguments

data	A time-based tibble or time-series object.
select	Applicable to tibbles and data frames only . The column or set of columns to be coerced to ts class.
date_var	Applicable to tibbles and data frames only . Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.
silent	Used to toggle printing of messages and warnings.
	Additional parameters to be passed to xts::xts(). Refer to xts::xts().

Details

tk_xts is a wrapper for xts::xts() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to xts class objects. There are three main advantages:

1. Non-numeric columns that are not removed via select are dropped and the user is warned. This prevents an error or coercion issue from occurring.

2. The date column is auto-detected if not specified by date_var. This takes the effort off the user to assign a date vector during coercion.

3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. The date_var can be used to specify the column with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the order.by argument from the underlying xts::xts() function can be used. The user must pass a vector of dates or date-times if order.by is used.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using xts::xts().

tk_xts_ is a nonstandard evaluation method.

Value

Returns a xts object.

See Also

```
tk_tbl(), tk_zoo(), tk_zooreg(), tk_ts()
```

```
library(dplyr)
### tibble to xts: Comparison between tk_xts() and xts::xts()
data_tbl <- tibble::tibble(</pre>
    date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
       = rep("chr values", 5),
       = cumsum(1:5),
         = cumsum(11:15) * rnorm(1))
# xts: Character columns cause coercion issues; order.by must be passed a vector of dates
xts::xts(data_tbl[,-1], order.by = data_tbl$date)
# tk_xts: Non-numeric columns automatically dropped; No need to specify date column
tk_xts(data_tbl)
# ts can be coerced back to xts
data_tbl %>%
    tk_ts(start = 2016, freq = 365) %>%
    tk_xts()
### Using select and date_var
tk_xts(data_tbl, select = y, date_var = date)
### NSE: Enables programming
date_var <- "date"
select <- "y"
tk_xts_(data_tbl, select = select, date_var = date_var)
```

tk_zoo 171

tk_zoo	Coerce time series objects and tibbles with date/date-time columns to xts.
	xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

```
tk_zoo(data, select = NULL, date_var = NULL, silent = FALSE, ...)
tk_zoo_(data, select = NULL, date_var = NULL, silent = FALSE, ...)
```

Arguments

data	A time-based tibble or time-series object.
select	Applicable to tibbles and data frames only . The column or set of columns to be coerced to ts class.
date_var	Applicable to tibbles and data frames only . Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.
silent	Used to toggle printing of messages and warnings.
	Additional parameters to be passed to xts::xts(). Refer to xts::xts().

Details

tk_zoo is a wrapper for zoo::zoo() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to zoo class objects. There are three main advantages:

- 1. Non-numeric columns that are not removed via select are dropped and the user is warned. This prevents an error or coercion issue from occurring.
- 2. The date column is auto-detected if not specified by date_var. This takes the effort off the user to assign a date vector during coercion.
- 3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only columns containing numeric data are coerced. The date_var can be used to specify the column with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the order.by argument from the underlying zoo::zoo() function can be used. The user must pass a vector of dates or date-times if order.by is used. Important Note: The ... arguments are passed to xts::xts(), which enables additional information (e.g. time zone) to be an attribute of the zoo object.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using zoo::zoo().

tk_zoo_ is a nonstandard evaluation method.

tk_zooreg

Value

Returns a zoo object.

See Also

```
tk_tbl(), tk_xts(), tk_zooreg(), tk_ts()
```

Examples

```
library(dplyr)
### tibble to zoo: Comparison between tk_zoo() and zoo::zoo()
data_tbl <- dplyr::tibble(</pre>
    date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
   x = rep("chr values", 5),
         = cumsum(1:5),
         = cumsum(11:15) * rnorm(1))
# zoo: Characters will cause error; order.by must be passed a vector of dates
zoo::zoo(data\_tbl[,-c(1,2)], order.by = data\_tbl$date)
# tk_zoo: Character columns dropped with a warning; No need to specify dates (auto detected)
tk_zoo(data_tbl)
# ts can be coerced back to zoo
data_tbl %>%
    tk_ts(start = 2016, freq = 365) %>%
    tk_zoo()
### Using select and date_var
tk_zoo(data_tbl, select = y, date_var = date)
### NSE: Enables programming
date_var <- "date"
select <- "v"
tk_zoo_(data_tbl, select = select, date_var = date_var)
```

tk_zooreg

Coerce time series objects and tibbles with date/date-time columns to ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

tk_zooreg 173

Usage

```
tk_zooreg(
 data,
  select = NULL,
 date_var = NULL,
 start = 1,
 end = numeric(),
 frequency = 1,
 deltat = 1,
 ts.eps = getOption("ts.eps"),
 order.by = NULL,
 silent = FALSE
)
tk_zooreg_(
  data,
  select = NULL,
 date_var = NULL,
 start = 1,
 end = numeric(),
 frequency = 1,
 deltat = 1,
  ts.eps = getOption("ts.eps"),
 order.by = NULL,
 silent = FALSE
)
```

Arguments

data	A time-based tibble or time-series object.
select	Applicable to tibbles and data frames only . The column or set of columns to be coerced to zooreg class.
date_var	Applicable to tibbles and data frames only . Column name to be used to order.by. NULL by default. If NULL, function will find the date or date-time column.
start	the time of the first observation. Either a single number or a vector of two integers, which specify a natural time unit and a (1-based) number of samples into the time unit.
end	the time of the last observation, specified in the same way as start.
frequency	the number of observations per unit of time.
deltat	the fraction of the sampling period between successive observations; e.g., $1/12$ for monthly data. Only one of frequency or deltat should be provided.
ts.eps	time series comparison tolerance. Frequencies are considered equal if their absolute difference is less than $ts.eps.$
order.by	a vector by which the observations in x are ordered. If this is specified the arguments start and end are ignored and zoo(data, order.by, frequency) is called. See zoo for more information.

174 tk_zooreg

silent

Used to toggle printing of messages and warnings.

Details

tk_zooreg() is a wrapper for zoo::zooreg() that is designed to coerce tibble objects that have a "time-base" (meaning the values vary with time) to zooreg class objects. There are two main advantages:

- 1. Non-numeric columns get removed instead causing coercion issues.
- 2. If an index is present, the returned zooreg object retains an index retrievable using tk_index().

The select argument is used to select subsets of columns from the incoming data.frame. The date_var can be used to specify the column with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the order.by argument from the underlying xts::xts() function can be used. The user must pass a vector of dates or date-times if order.by is used. Only columns containing numeric data are coerced. At a minimum, a frequency and a start should be specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using zoo::zooreg().

tk_zooreg_ is a nonstandard evaluation method.

Value

Returns a zooreg object.

See Also

```
tk_tbl(), tk_xts(), tk_zoo(), tk_ts()
```

```
### tibble to zooreg: Comparison between tk_zooreg() and zoo::zooreg()
data_tbl <- tibble::tibble(</pre>
   date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
        = rep("chr values", 5),
        = cumsum(1:5),
   У
        = cumsum(11:15) * rnorm(1))
# zoo::zooreg: Values coerced to character; Result does not retain index
data_zooreg <- zoo::zooreg(data_tbl[,-1], start = 2016, freq = 365)</pre>
data_zooreg
                           # Numeric values coerced to character
rownames(data_zooreg)
                           # NULL, no dates retained
# tk_zooreg: Only numeric columns get coerced; Result retains index as rownames
data_tk_zooreg <- tk_zooreg(data_tbl, start = 2016, freq = 365)</pre>
data_tk_zooreg
                           # No inadvertent coercion to character class
# timetk index
tk_index(data_tk_zooreg, timetk_idx = FALSE)
                                               # Regularized index returned
tk_index(data_tk_zooreg, timetk_idx = TRUE)
                                                # Original date index returned
```

ts_clean_vec 175

ts_clean_vec

Replace Outliers & Missing Values in a Time Series

Description

This is mainly a wrapper for the outlier cleaning function, tsclean(), from the forecast R package. The ts_clean_vec() function includes arguments for applying seasonality to numeric vector (non-ts) via the period argument.

Usage

```
ts_clean_vec(x, period = 1, lambda = NULL)
```

Arguments

x A numeric vector.

period A seasonal period to use during the transformation. If period = 1, seasonality

is not included and supsmu() is used to fit a trend. If period > 1, a robust STL decomposition is first performed and a linear interpolation is applied to the

seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated

lambda selection.

Details

Cleaning Outliers

- Non-Seasonal (period = 1): Uses stats::supsmu()
- 2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decomposition) for seasonal series.

To estimate missing values and outlier replacements, linear interpolation is used on the (possibly seasonally adjusted) series. See forecast::tsoutliers() for the outlier detection method.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

ts_clean_vec

Value

A numeric vector with the missing values and/or anomalies transformed to imputed values.

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

```
• Box Cox Transformation: box_cox_vec()
```

```
• Lag Transformation: lag_vec()
```

- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()
- Outlier Cleaning for Time Series: ts_clean_vec()

```
library(dplyr)

# --- VECTOR ----

values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

# Linear interpolation + Outlier Cleansing
ts_clean_vec(values, period = 1, lambda = NULL)

# Seasonal Interpolation: set period = 4
ts_clean_vec(values, period = 4, lambda = NULL)

# Seasonal Interpolation with Box Cox Transformation (internal)
ts_clean_vec(values, period = 4, lambda = "auto")</pre>
```

ts_impute_vec 177

ts_impute_vec

Description

This is mainly a wrapper for the Seasonally Adjusted Missing Value using Linear Interpolation function, na.interp(), from the forecast R package. The ts_impute_vec() function includes arguments for applying seasonality to numeric vector (non-ts) via the period argument.

Usage

```
ts_impute_vec(x, period = 1, lambda = NULL)
```

Arguments

x A numeric vector.

period A seasonal period to use during the transformation. If period = 1, linear in-

terpolation is performed. If period > 1, a robust STL decomposition is first performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated

lambda selection.

Details

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

- 1. **Period is 1:** With period = 1, a seasonality cannot be interpreted and therefore linear is used.
- 2. **Number of Non-Missing Values is less than 2-Periods**: Insufficient values exist to detect seasonality.
- 3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative meaning the variance grows exponentially. A Box Cox transformation can be automated by setting lambda = "auto" or can be specified by setting lambda = numeric value.

Value

A numeric vector with the missing values imputed.

References

- Forecast R Package
- Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

- Box Cox Transformation: box_cox_vec()
- Lag Transformation: lag_vec()
- Differencing Transformation: diff_vec()
- Rolling Window Transformation: slidify_vec()
- Loess Smoothing Transformation: smooth_vec()
- Fourier Series: fourier_vec()
- Missing Value Imputation for Time Series: ts_impute_vec()

Examples

```
library(dplyr)

# --- VECTOR ----

values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

# Linear interpolation
ts_impute_vec(values, period = 1, lambda = NULL)

# Seasonal Interpolation: set period = 4
ts_impute_vec(values, period = 4, lambda = NULL)

# Seasonal Interpolation with Box Cox Transformation (internal)
ts_impute_vec(values, period = 4, lambda = "auto")</pre>
```

walmart_sales_weekly Sample Time Series Retail Data from the Walmart Recruiting Store Sales Forecasting Competition

Description

The Kaggle "Walmart Recruiting - Store Sales Forecasting" Competition used **retail data** for combinations of stores and departments within each store. The competition began February 20th, 2014 and ended May 5th, 2014. The competition included data from 45 retail stores located in different regions. The dataset included various external features including Holiday information, Temperature, Fuel Price, and Markdown. This dataset includes a **Sample of 7 departments from the Store ID 1 (7 total time series)**.

walmart_sales_weekly 179

Usage

```
walmart_sales_weekly
```

Format

A tibble: 9,743 x 3

- id Factor. Unique series identifier (4 total)
- Store Numeric. Store ID.
- Dept Numeric. Department ID.
- Date Date. Weekly timestamp.
- Weekly_Sales Numeric. Sales for the given department in the given store.
- IsHoliday Logical. Whether the week is a "special" holiday for the store.
- Type Character. Type identifier of the store.
- Size Numeric. Store square-footage
- Temperature Numeric. Average temperature in the region.
- Fuel_Price Numeric. Cost of fuel in the region.
- MarkDown1, MarkDown2, MarkDown3, MarkDown4, MarkDown5 Numeric. Anonymized data related to promotional markdowns that Walmart is running. MarkDown data is only available after Nov 2011, and is not available for all stores all the time. Any missing value is marked with an NA.
- CPI Numeric. The consumer price index.
- Unemployment Numeric. The unemployment rate in the region.

Details

This is a sample of 7 Weekly data sets from the Kaggle Walmart Recruiting Store Sales Forecasting competition.

Holiday Features

The four holidays fall within the following weeks in the dataset (not all holidays are in the data):

- Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13
- Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13
- Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13
- Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

Source

• Kaggle Competition Website

```
walmart_sales_weekly
```

wikipedia_traffic_daily

Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition

Description

The Kaggle "Web Traffic Forecasting" (Wikipedia) Competition used **Google Analytics Web Traffic Data** for 145,000 websites. Each of these time series represent a number of daily views of a different Wikipedia articles. The competition began July 13th, 2017 and ended November 15th, 2017. This dataset includes a **Sample of 10 article pages (10 total time series)**.

Usage

```
wikipedia_traffic_daily
```

Format

A tibble: 9,743 x 3

- Page Character. Page information.
- date Date. Daily timestamp.
- value Numeric. Daily views of the wikipedia article.

Details

This is a sample of 10 Daily data sets from the Kaggle Web Traffic Forecasting (Wikipedia) Competition

Source

• Kaggle Competition Website

Examples

wikipedia_traffic_daily

Index

* datagen	step_holiday_signature, 90
step_fourier,87	%+time% (time_arithmetic), 120
step_holiday_signature, 90	%-time% (time_arithmetic), 120
step_slidify, 96	
step_slidify_augment,99	add_time(time_arithmetic), 120
step_smooth, 102	anomalize, 4
* datasets	anydate(), 40
bike_sharing_daily, 9	anytime(), 40
FANG, 16	<pre>auto_lambda (box_cox_vec), 10</pre>
m4_daily, 29	between_time, 7
m4_hourly, 30	between_time(), 8, 13, 18, 20, 35, 39, 71,
m4_monthly, 31	118, 120
m4_quarterly, 32	bike_sharing_daily, 9
m4_weekly, 32	box_cox_inv_vec (box_cox_vec), 10
m4_yearly, 33	box_cox_vec, 10
taylor_30_min, 119	box_cox_vec(), 11, 15, 22, 27, 29, 36, 77, 80,
walmart_sales_weekly, 178	82, 176, 178
wikipedia_traffic_daily, 180	
* dates	condense_period, 12
step_fourier,87	condense_period(), 8, 13, 18, 20, 35, 39, 71,
${\sf step_holiday_signature}, 90$	118
step_ts_pad, 114	cor(), 118
* model_specification	cov(), 118
step_fourier,87	diff_inv_vec (diff_vec), 14
step_holiday_signature, 90	diff_vec, 14
step_ts_pad, 114	diff_vec(), 11, 15, 22, 27, 29, 36, 77, 80, 82,
* moving_windows	132, 176, 178
step_slidify,96	dplyr::mutate(), 73
step_slidify_augment,99	apry1
step_smooth, 102	FANG, 16
* preprocessing	filter_by_time, 17
step_fourier,87	filter_by_time(), 7, 8, 13, 18-20, 35, 39,
step_holiday_signature, 90	71, 118
step_slidify,96	filter_period, 19
step_slidify_augment,99	filter_period(), 8, 13, 17, 18, 20, 35, 39,
step_smooth, 102	71, 118
step_ts_pad, 114	fourier_vec, 20
* variable_encodings	fourier_vec(), 11, 15, 22, 27, 29, 36, 77, 80,
step_fourier, 87	82, 133, 176, 178

INDEX

future_frame, 23	plot_anomaly_diagnostics,48
	<pre>plot_anomaly_diagnostics(), 130</pre>
<pre>get_tk_time_scale_template</pre>	plot_seasonal_diagnostics, 52
<pre>(set_tk_time_scale_template),</pre>	<pre>plot_seasonal_diagnostics(), 44, 128</pre>
69	plot_stl_diagnostics, 54
<pre>get_tk_time_scale_template(), 141</pre>	plot_time_series,57
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	plot_time_series(), 44, 66, 68, 128
has_timetk_idx (tk_index), 147	<pre>plot_time_series_boxplot, 61</pre>
is_date_class, 25	<pre>plot_time_series_cv_plan, 65</pre>
is_uate_crass, 23	plot_time_series_cv_plan(), 66, 123, 164
lag_vec, 26	<pre>plot_time_series_regression, 67</pre>
lag_vec(), 11, 15, 22, 27, 29, 36, 77, 80, 82,	purrr::map(), 73
136, 176, 178	
lead_vec (lag_vec), 26	recipes::selections(), 88, 91, 92, 96, 100
log_interval_inv_vec	103, 107, 114
=	recipes::step_lag(), 27, 86
(log_interval_vec), 28	<pre>recipes::step_naomit(),87</pre>
log_interval_vec, 28	<pre>recipes::step_normalize(), 107</pre>
log_interval_vec(), 95	recipes::step_rm(), 89, 92, 107
<pre>lubridate::period(), 120</pre>	rsample::rolling_origin(), 66, 123, 126,
m4_daily, 29	164
m4_hourly, 30	
	sd(), <i>118</i>
m4_monthly, 31	selections(), 83, 86, 94, 109, 112
m4_quarterly, 32	<pre>set_tk_time_scale_template, 69</pre>
m4_weekly, 32	<pre>set_tk_time_scale_template(), 141</pre>
m4_yearly, 33	slice_period,70
max(), 118	slice_period(), 8, 13, 18, 20, 35, 39, 71
mean(), 118	slidify, 72
median(), 118	slidify(), 8, 13, 18, 20, 35, 39, 71, 77, 118
min(), 118	slidify_vec, 76
mutate_by_time, 34	slidify_vec(), 11, 15, 22, 27, 29, 36, 73, 77
mutate_by_time(), 8, 13, 18, 20, 35, 39, 71,	80, 82, 138, 176, 178
118	smooth_vec, 79
normaliza inv vac (normaliza vac) 36	smooth_vec(), 11, 15, 22, 27, 29, 36, 58, 62,
normalize_inv_vec (normalize_vec), 36 normalize_vec, 36	63, 66, 77, 80, 82, 176, 178
	standardize_inv_vec(standardize_vec),
$normalize_vec(), 36, 82$	81
pad_by_time, 37	standardize_vec, 81
pad_by_time(), 8, 13, 18, 20, 35, 39, 71, 118	standardize_vec(), 36, 82
parse_date2, 40	stats::lm(), 67, 68
parse_datetime2 (parse_date2), 40	stats::stl(), 6, 51, 56, 130, 159
plot_acf_diagnostics, 41	step_box_cox, 83
plot_acf_diagnostics(), 44, 127, 128	
	step_box_cox(), 84, 86, 89, 92, 98, 102, 104
plot_anomalies, 44 plot_anomalies_cleaned	107, 110, 113, 115 step_diff, 85
•	
<pre>(plot_anomalies), 44 plot_anomalies_decomp (plot_anomalies),</pre>	step_diff(), 15, 84, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 115
prot_anomarres_decomp (prot_anomarres), 44	104, 107, 110, 113, 113 step fourier. 87
'1'1	SIED IUULIEL. 0/

INDEX 183

step_fourier(), 22, 84, 86, 89, 92, 95, 98,	tidy.step_smooth(step_smooth), 102
101, 104, 107, 110, 113, 115	<pre>tidy.step_timeseries_signature</pre>
step_holiday_signature, 90	<pre>(step_timeseries_signature),</pre>
step_holiday_signature(), 84, 86, 89, 92,	106
95, 98, 101, 104, 107, 110, 113, 115,	tidy.step_ts_clean(step_ts_clean), 108
143	<pre>tidy.step_ts_impute (step_ts_impute),</pre>
step_log_interval, 93	111
step_log_interval(), 95	<pre>tidy.step_ts_pad(step_ts_pad), 114</pre>
step_naomit(), 85	time_arithmetic, 120
step_slidify, 96	time_series_cv, 121, 125
step_slidify(), 77, 84, 86, 89, 92, 95, 98,	time_series_cv(), 66, 123, 124, 126, 164
101, 104, 107, 110, 113, 115	time_series_split, 124
step_slidify_augment, 99	<pre>time_series_split(), 123</pre>
step_smooth, 102	timetk(timetk-package),4
step_smooth(), 80, 84, 86, 89, 92, 95, 98,	timetk-package, 4
101, 104, 107, 110, 113, 115	tk_acf_diagnostics, 127
step_timeseries_signature, 106	tk_anomaly_diagnostics, 129
step_timeseries_signature(), 84, 86, 89,	tk_anomaly_diagnostics(), 51
92, 95, 98, 101, 104, 107, 110, 113,	tk_augment_differences, 131
115	tk_augment_differences(), 15, 132, 133,
step_ts_clean, 108	135, 136, 138, 140
step_ts_clean(), 84, 87, 89, 92, 95, 98, 102,	tk_augment_fourier, 132
104, 107, 110, 113, 115	tk_augment_fourier(), 22, 132, 133, 135,
step_ts_impute, 111	136, 138, 140
step_ts_impute(), 84, 87, 89, 92, 95, 98,	tk_augment_holiday, 133
102, 104, 107, 110, 113, 115	tk_augment_holiday_signature
step_ts_pad, 114	(tk_augment_holiday), 133
step_ts_pad(), 84, 87, 89, 92, 95, 98, 102,	tk_augment_holiday_signature(),
104, 107, 110, 113, 115	132–134, 136, 138, 140, 143
<pre>subtract_time (time_arithmetic), 120</pre>	tk_augment_lags, 135
sum(), 118	tk_augment_lags(), 27, 132, 133, 135, 136,
<pre>summarise_by_time, 116</pre>	138, 140
summarise_by_time(), 8, 13, 18, 20, 35, 38,	tk_augment_leads (tk_augment_lags), 135
71, 118	tk_augment_slidify, 137
<pre>summarize_by_time (summarise_by_time),</pre>	tk_augment_slidify(), 73, 77, 132, 133,
116	135, 136, 138, 140
	tk_augment_timeseries, 139
taylor_30_min, 119	
tibble::as_tibble(), 162	<pre>tk_augment_timeseries_signature</pre>
tidy.step_box_cox(step_box_cox), 83	•
tidy.step_diff(step_diff), 85	tk_augment_timeseries_signature(),
tidy.step_fourier(step_fourier), 87	132–134, 136, 138, 140, 145
tidy.step_holiday_signature	tk_get_frequency, 140
(step_holiday_signature), 90	tk_get_frequency(), 5, 49, 55, 70, 129, 159
tidy.step_log_interval	tk_get_holiday, 142
(step_log_interval), 93	tk_get_holiday_signature
tidy.step_slidify(step_slidify),96	(tk_get_holiday), 142
tidy.step_slidify_augment	tk_get_holiday_signature(), 134, 135
(step_slidify_augment), 99	tk_get_holidays_by_year

INDEX

(tk_get_holiday), 142	tk_zo
tk_get_timeseries, 144	tk_zo
<pre>tk_get_timeseries_signature</pre>	tk_zo
(tk_get_timeseries), 144	tk_zo
tk_get_timeseries_signature(), 140, 150	tk_zo
tk_get_timeseries_summary	tk_zo
(tk_get_timeseries), 144	ts_cl
tk_get_timeseries_summary(), 150, 161	ts_cl
tk_get_timeseries_unit_frequency, 145	
tk_get_timeseries_variables, 146	ts_im
tk_get_trend (tk_get_frequency), 140	ts_im
tk_get_trend(), 5, 49, 70, 129	
tk_index, 147	
tk_index(), 145, 150, 162, 166, 174	var()
tk_make_future_timeseries, 148	1
tk_make_future_timeseries(), 23, 25, 145,	walma
152, 155	wikip
tk_make_holiday_sequence, 151	700 1
tk_make_holiday_sequence(), 150, 152,	zoo, <i>1</i>
155	
tk_make_timeseries, 153	
tk_make_timeseries(), <i>150</i> , <i>152</i> , <i>155</i>	
tk_make_weekday_sequence	
(tk_make_holiday_sequence), 151	
tk_make_weekday_sequence(), 150, 152,	
155	
tk_make_weekend_sequence	
(tk_make_holiday_sequence), 151	
tk_make_weekend_sequence(), 150, 152,	
155	
tk_seasonal_diagnostics, 157	
tk_stl_diagnostics, 159	
tk_summary_diagnostics, 160	
tk_tbl, 161	
tk_tbl(), 148, 166, 170, 172, 174	
tk_time_scale_template	
<pre>(set_tk_time_scale_template),</pre>	
69	
tk_time_scale_template(), 6, 51, 130	
tk_time_series_cv_plan, 163	
<pre>tk_time_series_cv_plan(),66</pre>	
tk_ts, 164	
tk_ts(), 147, 148, 162, 170–172, 174	
tk_ts_(tk_ts), 164	
tk_tsfeatures, 167	
tk_xts, 169	
tk_xts(), 148, 162, 166, 172, 174	
tk_xts_(tk_xts), 169	

```
tk_zoo, 171
tk_zoo(), 148, 162, 166, 170, 174
tk_zoo_(tk_zoo), 171
tk_zooreg, 172
tk_zooreg(), 148, 162, 166, 170, 172
tk_zooreg_(tk_zooreg), 172
ts_clean_vec, 175
ts_clean_vec(), 11, 15, 22, 27, 29, 36, 82, 176
ts_impute_vec(), 11, 15, 22, 27, 29, 36, 38, 77, 80, 82, 176, 178

var(), 118
walmart_sales_weekly, 178
wikipedia_traffic_daily, 180
zoo, 173
```