tidyterra

CRAN status CRAN results Downloads DOI R-CMD-check codecov CodeFactor r-universe Project Status: Active – The project has reached a stable, usable state and is being actively developed. Stack Exchange questions Works with terra-devel Works with sf-devel Works with ggplot2-devel Works with dplyr and readr-devel

The goal of {tidyterra} is to provide common methods of the tidyverse packages for objects created with the {terra} package: SpatRaster and SpatVector. It also provides geoms for plotting these objects with {ggplot2}.

Overview

{tidyverse} methods implemented on {tidyterra} works differently depending on the type of Spat* object:

The methods implemented return the same type of object used as input, unless the expected behavior of the method is to return another type of object, (for example, as_tibble() would return a tibble).

Current methods and functions provided by {tidyterra} are:

tidyverse method SpatVector SpatRaster
tibble::as_tibble() ✔️ ✔️
dplyr::select() ✔️ ✔️ Select layers
dplyr::mutate() ✔️ ✔️ Create /modify layers
dplyr::transmute() ✔️ ✔️
dplyr::filter() ✔️ ✔️ Modify cells values and (additionally) remove outer cells.
dplyr::slice() ✔️ ✔️ Additional methods for slicing by row and column.
dplyr::pull() ✔️ ✔️
dplyr::rename() ✔️ ✔️
dplyr::relocate() ✔️ ✔️
dplyr::distinct() ✔️
dplyr::arrange() ✔️
dplyr::glimpse() ✔️ ✔️
dplyr::inner_join() family ✔️
dplyr::summarise() ✔️
dplyr::group_by() family ✔️
dplyr::rowwise() ✔️
dplyr::count(), tally() ✔️
dplyr::bind_cols() / dplyr::bind_rows() ✔️ as bind_spat_cols() / bind_spat_rows()
tidyr::drop_na() ✔️ ✔️ Remove cell values with NA on any layer. Additionally, outer cells with NA are removed.
tidyr::replace_na() ✔️ ✔️
ggplot2::autoplot() ✔️ ✔️
ggplot2::fortify() ✔️ to sf via sf::st_as_sf() To a tibble with coordinates.
ggplot2::geom_*() ✔️ geom_spatvector() ✔️ geom_spatraster() and geom_spatraster_rgb().

:exclamation: A note on performance

{tidyterra} is conceived as a user-friendly wrapper of {terra} using the {tidyverse} methods and verbs. This approach therefore has a cost in terms of performance.

If you are a heavy user of {terra} or you need to work with big raster files, {terra} is much more focused on terms of performance. When possible, each function of {tidyterra} references to its equivalent on {terra}.

As a rule of thumb if your raster has less than 10.000.000 data slots counting cells and layers (i.e. terra::ncell(your_rast)*terra::nlyr(your_rast) < 10e6) you are good to go with {tidyterra}.

When plotting rasters, resampling is performed automatically (as terra::plot() does, see the help page). You can adjust this with the maxcell parameter.

Installation

Install {tidyterra} from CRAN:

install.packages("tidyterra")

You can install the development version of {tidyterra} like so:

remotes::install_github("dieghernan/tidyterra")

Alternatively, you can install {tidyterra} using the r-universe:

# Enable this universe
options(repos = c(
  dieghernan = "https://dieghernan.r-universe.dev",
  CRAN = "https://cloud.r-project.org"
))
install.packages("tidyterra")

Example

SpatRasters

This is a basic example which shows you how to manipulate and plot SpatRaster objects:

library(tidyterra)
library(terra)

# Temperatures
rastertemp <- rast(system.file("extdata/cyl_temp.tif", package = "tidyterra"))

rastertemp
#> class       : SpatRaster 
#> dimensions  : 87, 118, 3  (nrow, ncol, nlyr)
#> resolution  : 3881.255, 3881.255  (x, y)
#> extent      : -612335.4, -154347.3, 4283018, 4620687  (xmin, xmax, ymin, ymax)
#> coord. ref. : World_Robinson 
#> source      : cyl_temp.tif 
#> names       :   tavg_04,   tavg_05,  tavg_06 
#> min values  :  1.885463,  5.817587, 10.46338 
#> max values  : 13.283829, 16.740898, 21.11378

# Rename
rastertemp <- rastertemp %>%
  rename(April = tavg_04, May = tavg_05, June = tavg_06)

# Facet all layers
library(ggplot2)

ggplot() +
  geom_spatraster(data = rastertemp) +
  facet_wrap(~lyr, ncol = 2) +
  scale_fill_whitebox_c(
    palette = "muted",
    labels = scales::label_number(suffix = "º"),
    n.breaks = 12,
    guide = guide_legend(reverse = TRUE)
  ) +
  labs(
    fill = "",
    title = "Average temperature in Castille and Leon (Spain)",
    subtitle = "Months of April, May and June"
  )


# Create maximum differences of two months
variation <- rastertemp %>%
  mutate(diff = June - May) %>%
  select(variation = diff)

# Add also a overlay of a SpatVector
prov <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

ggplot(prov) +
  geom_spatraster(data = variation) +
  geom_spatvector(fill = NA) +
  scale_fill_whitebox_c(
    palette = "deep", direction = -1,
    labels = scales::label_number(suffix = "º"),
    n.breaks = 5
  ) +
  theme_minimal() +
  coord_sf(crs = 25830) +
  labs(
    fill = "variation",
    title = "Variation of temperature in Castille and Leon (Spain)",
    subtitle = "Average temperatures in June vs. May"
  )

{tidyterra} also provide a geom for plotting RGB SpatRaster tiles with {ggplot2}

rgb_tile <- rast(system.file("extdata/cyl_tile.tif", package = "tidyterra"))

plot <- ggplot(prov) +
  geom_spatraster_rgb(data = rgb_tile) +
  geom_spatvector(fill = NA) +
  theme_light()

plot


# Recognizes coord_sf()
plot +
  # Change crs and datum (for relabeling graticules)
  coord_sf(crs = 3857, datum = 3857)

{tidyterra} provides specific scales for plotting hypsometric maps with {ggplot2}:

asia <- rast(system.file("extdata/asia.tif", package = "tidyterra"))

terra::plot(asia)


ggplot() +
  geom_spatraster(data = asia) +
  scale_fill_hypso_tint_c(
    palette = "gmt_globe",
    labels = scales::label_number(),
    # Further refinements
    breaks = c(-10000, -5000, 0, 2000, 5000, 8000),
    guide = guide_colorbar(reverse = TRUE)
  ) +
  labs(
    fill = "elevation (m)",
    title = "Hypsometric map of Asia"
  )

SpatVectors

This is a basic example which shows you how to manipulate and plot SpatVector objects:

vect(system.file("ex/lux.shp", package = "terra")) %>%
  mutate(pop_dens = POP / AREA) %>%
  glimpse() %>%
  autoplot(aes(fill = pop_dens)) +
  scale_fill_whitebox_c(palette = "pi_y_g") +
  labs(
    fill = "population per km2",
    title = "Population density of Luxembourg",
    subtitle = "By canton"
  )
#> Geometry type: Polygons
#> Geodetic CRS: lon/lat WGS 84 (EPSG:4326)
#> Extent (x , y) : [5° 44' 38.9045" E - 6° 31' 41.7076" E] , [49° 26' 52.1063" N - 50° 10' 53.8376" N]
#> Rows: 12
#> Columns: 7
#> $ ID_1     <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3
#> $ NAME_1   <chr> "Diekirch", "Diekirch", "Diekirch", "Diekirch", "Diekirch", "…
#> $ ID_2     <dbl> 1, 2, 3, 4, 5, 6, 7, 12, 8, 9, 10, 11
#> $ NAME_2   <chr> "Clervaux", "Diekirch", "Redange", "Vianden", "Wiltz", "Echte…
#> $ AREA     <dbl> 312, 218, 259, 76, 263, 188, 129, 210, 185, 251, 237, 233
#> $ POP      <int> 18081, 32543, 18664, 5163, 16735, 18899, 22366, 29828, 48187,…
#> $ pop_dens <dbl> 57.95192, 149.27982, 72.06178, 67.93421, 63.63118, 100.52660,…

I need your feedback

{tidyterra} is currently on development mode. Please leave your feedback or open an issue on https://github.com/dieghernan/tidyterra/issues.

Need help?

Check our FAQs or open a new issue!

You can also ask in Stack Overflow using the tag tidyterra.

Citation

If you use this software, please cite our article in the Journal of Open Source Software:

Hernangómez, D., (2023). Using the tidyverse with terra objects: the tidyterra package. Journal of Open Source Software, 8(91), 5751, https://doi.org/10.21105/joss.05751.

A BibTeX entry for LaTeX users is

@Article{R-tidyterra,
  title = {Using the {tidyverse} with {terra} objects: the {tidyterra} package},
  doi = {10.21105/joss.05751},
  author = {Diego Hernangómez},
  year = {2023},
  url = {https://doi.org/10.21105/joss.05751},
  publisher = {The Open Journal},
  volume = {8},
  number = {91},
  pages = {5751},
  journal = {Journal of Open Source Software},
  issn = {2475-9066},
}

Acknowledgement

{tidyterra} ggplot2 geoms are based on {ggspatial} implementation, by Dewey Dunnington and ggspatial contributors.