Package 'tidygam'

May 9, 2023

Type Package

Title Tidy Prediction and Plotting of Generalised Additive Models

Version 0.2.0

Date 2023-05-08

Description Provides functions that compute predictions from Generalised Additive Models (GAMs) fitted with 'mgcv' and return them as a tibble. These can be plotted with a generic plot()-method that uses 'ggplot2' or plotted as any other data frame. The main function is predict_gam().

License MIT + file LICENSE

URL https://github.com/stefanocoretta/tidygam,

https://stefanocoretta.github.io/tidygam/

BugReports https://github.com/stefanocoretta/tidygam/issues

Encoding UTF-8

LazyData true

Imports cli, dplyr, ggplot2, glue, insight, magrittr, mgcv, rlang, stringr, tibble, tidyr, tidyselect

Suggests knitr, rmarkdown

VignetteBuilder knitr

Language en_GB

RoxygenNote 7.2.0

Depends R (>= 2.10)

NeedsCompilation no

Author Stefano Coretta [aut, cre]

Maintainer Stefano Coretta < stefano.coretta@gmail.com>

Repository CRAN

Date/Publication 2023-05-09 08:50:02 UTC

2 gest

R topics documented:

_difference
.tidygam
tidygam.diff
lict_gam
ct
9

gest

Index

Number of gestures by infants at 10, 11 and 12 months

Description

This data table contains counts of three type of gestures performed by 60 infants from Bengali, Chinese and British backgrounds.

Usage

gest

Format

A tibble with 540 observations and 5 variables:

dyad Unique parent/infant dyad ID.

background Cultural background of dyad.

months Time point in infant months.

gesture Type of gesture.

count Number of gestures.

Source

doi:10.1111/cdev.13406

get_difference 3

get_d:	iff	ere	nce
--------	-----	-----	-----

Get difference between two smooths

Description

Get difference between two smooths

Usage

```
get_difference(
  model,
  series,
  compare,
  values = NULL,
  exclude_terms = NULL,
  length_out = 25,
  ci_z = 1.96
)
```

Arguments

model A gam or bam model object.

series A string specifying the variable that corresponds to the series to be plotted on

the \$x\$-axis. If a string is given, the other numeric variables in the model are set to their mean value, unless specific values are given in values. If a character vector of two strings is given, the two variables will be taken as the elements of

a tensor product smooth. This allows the user to plot 2D raster plots.

compare A named list of factor levels to compare.

values User supplied values for specific variables as a named list.

exclude_terms Terms to be excluded from the prediction. Term names should be given as they

appear in the model summary (for example, "s(x0, x1)").

length_out An integer indicating how many values to use along the numeric variables for

predicting the response (the default is 10).

ci_z The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).

Value

A tibble with the difference smooth.

Examples

```
library(mgcv)
set.seed(10)
data <- gamSim(4)
model <- gam(y ~ s(x2, by = fac) + s(x0), data = data)
get_difference(model, "x2", list(fac = c("1", "2")))</pre>
```

4 plot.tidygam

plot.tidygam

Plot methods for tidygam objects

Description

Plotting methods for tidygam objects.

Usage

```
## S3 method for class 'tidygam'
plot(x, series = NULL, comparison = NULL, raster_interp = FALSE, ...)
```

Arguments

x A tidygam object (see predict_gam()).

series A string specifying the variable that corresponds to the series to be plotted on

the \$x\$-axis. If a string is given, the other numeric variables in the model are set to their mean value, unless specific values are given in values. If a character vector of two strings is given, the two variables will be taken as the elements of

a tensor product smooth. This allows the user to plot 2D raster plots.

comparison Name of a categorical predictor to compare as a string.

raster_interp Whether to linearly interpolate when plotting a tensor product smooth/interaction.

It makes sense only when series has two variables. The default is FALSE.

... Arguments passed to plot().

Value

A ggplot object.

Examples

```
library(mgcv)
set.seed(10)
sim_data <- gamSim(4)

model_1 <- gam(y ~ s(x2, by = fac) + s(x0), data = sim_data)

preds_1 <- predict_gam(model_1, length_out = 50, exclude_terms = "s(x0)")
plot(preds_1, "x2")

preds_2 <- predict_gam(model_1, length_out = 100, values = list(x0 = 0))
plot(preds_2, "x2", "fac")
library(ggplot2)
plot(preds_2, "x2", "fac") +
    scale_fill_brewer(type = "qual") +
    scale_color_brewer(type = "qual")</pre>
```

plot.tidygam.diff 5

```
# Plotting tensor product smooths/interactions
model_2 <- gam(y ~ te(x0, x2, by = fac), data = sim_data)
preds_3 <- predict_gam(model_2)
preds_3 %>% plot(series = c("x0", "x2"), comparison = "fac")
```

plot.tidygam.diff

Plot methods for tidygam.diff objects

Description

Plotting methods for tidygam.diff objects.

Usage

```
## S3 method for class 'tidygam.diff'
plot(x, ..., sig = TRUE, sig_col = "red", sig_alpha = 0.25)
```

Arguments

Value

A ggplot object.

Examples

```
library(mgcv)
set.seed(10)
data <- gamSim(4)
model <- gam(y ~ s(x2, by = fac) + s(x0), data = data)

model_diff <- get_difference(model, "x2", list(fac = c("1", "2")))
plot(model_diff)</pre>
```

6 predict_gam

predict_gam

Get predictions from a GAM model

Description

Return predictions from a GAM model generated with mgcv. The output can be plotted with plot().

Usage

```
predict_gam(
  model,
  length_out = 10,
  values = NULL,
  series = NULL,
  exclude_terms = NULL,
  ci_z = 1.96,
  tran_fun = NULL,
  separate = NULL,
  sep_by = "\\."
)
```

Arguments

model	A gam or bam model object.
length_out	An integer indicating how many values to use along the numeric variables for predicting the response (the default is 10).
values	User supplied values for specific variables as a named list.
series	A string specifying the variable that corresponds to the series to be plotted on the \$x\$-axis. If a string is given, the other numeric variables in the model are set to their mean value, unless specific values are given in values. If a character vector of two strings is given, the two variables will be taken as the elements of a tensor product smooth. This allows the user to plot 2D raster plots.
exclude_terms	Terms to be excluded from the prediction. Term names should be given as they appear in the model summary (for example, " $s(x0,x1)$ ").
ci_z	The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).
tran_fun	Function to use for transforming the predicted values and CIs.
separate	Names list of factor interaction variables to be separated.
sep_by	Character to separate by (the default is \\.).

Value

A tibble with predictions.

struct 7

Examples

```
library(mgcv)
set.seed(10)
sim_data_1 \leftarrow gamSim(1, n = 200, scale = 2)
model \leftarrow gam(y \sim x0 + s(I(x1^2)) + s(x2) + offset(x3), data = sim_data_1)
predict_gam(model)
predict_gam(model, values = list(x0 = mean(sim_data_1$x0)))
predict_gam(model, series = "x2")
predict_gam(model, exclude_terms = "s(I(x1^2))")
# By-variables
sim_data_2 <- gamSim(4)</pre>
model_2 \leftarrow gam(y \sim s(x2, by = fac) + s(x0), data = sim_data_2)
predict_gam(model_2)
# Poisson data
sim_data_3 <- sim_data_2
sim_data_3$y <- round(sim_data_2$y) + 20</pre>
model_3 \leftarrow gam(y \sim s(x2, by = fac), data = sim_data_3, family = poisson)
predict_gam(model_3, length_out = 50)
predict_gam(model_3, length_out = 50, tran_fun = exp)
# Bivariate smooths
model_4 \leftarrow gam(y \sim te(x1, x2), data = sim_data_1)
predict_gam(model_4)
```

struct

ERP to structural violation in music and language

Description

This data table contains ERP amplitude data from 39 subjects listening to speech and music.

Usage

struct

Format

A tibble with 17160 observations and 6 variables:

t Time from stimulus onset in milliseconds.

electrode Electrode number.

voltage Electrode voltage at time t.

stimulus.condition Language vs music.

grammar.condition Structural type (grammatical vs ungrammatical).

8 struct

Source

doi:10.31234/osf.io/e9w3v

Index

```
* datasets
    gest, 2
    struct, 7

gest, 2
get_difference, 3
get_difference(), 5

plot.tidygam, 4
plot.tidygam.diff, 5
predict_gam, 6
predict_gam(), 4

struct, 7
```