## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) evaluate = FALSE ## ----eval = evaluate, warning=FALSE, message=FALSE, dpi=300------------------- # # # Install the text package (only needed the first time) # # install.packages("text") # library(text) # # textrpp_install() # # textrpp_initialize() # # # Get the LBAM as a data frame and filter for models starting with “Dep” # lbam <- text::textLBAM() # # subset( # lbam, # substr(Construct_Concept_Behaviours, 1, 3) == "dep", # select = c(Construct_Concept_Behaviours, Name) # ) # # # Example text to access # text_to_assess = c( # "I feel down and blue all the time.", # "I feel great and have no worries that bothers me.") # # # Produce depression severity scores using a text-trained model # # This command downloads the model, creates word embeddings, and applies the model to the embeddings. # depression_scores <- text::textPredict( # model_info = "depression_text_phq9_roberta23_gu2024", # texts = text_to_assess, # dim_name = FALSE) # # # You can find information about a text-trained model in R. # model_Gu2024 <- readRDS("depressiontext_robertaL23_phq9_Gu2024.rds") # model_Gu2024 # # # Assess the harmony in life of the same text as above # # The function now uses the same word embeddings as above (i.e., it does not produce new ones). # harmony_in_life_scores <- textAssess( # model_info = "harmony_text_roberta23_kjell2022", # texts = text_to_assess, # dim_name = FALSE) # # # Assign implicit motives labels using fine-tuned models # implicit_motive <- text::textClassify( # model_info = "implicitpower_roberta_ft_nilsson2024", # texts = text_to_assess) #