## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 4, dpi = 120 ) library(tatooheene) ## ----no-discount-------------------------------------------------------------- c_annual <- 100 c_t3_undiscounted <- 3 * c_annual c_t3_undiscounted ## ----discount-rate------------------------------------------------------------ v_c_SoC <- rep(c_annual, 3) # Vector of costs values on all years for standard of care names(v_c_SoC) <- c("Year 1", "Year 2", "Year 3") # name the vector ## ----example-guideline-------------------------------------------------------- apply_discounting(values = v_c_SoC, discount_rate = "costs", times = c(0, 1, 2)) ## ----example-discount-stream-QALY--------------------------------------------- apply_discounting(values = c(1, 1, 1, 1), discount_rate = "effects", times = c(0, 1, 2, 3)) ## ----example-guideline-sum---------------------------------------------------- # aggregate the values sum(apply_discounting(values = v_c_SoC, discount_rate = "costs", times = c(0, 1, 2))) # sum apply_discounting(values = v_c_SoC, discount_rate = "costs", times = c(0, 1, 2), aggregate = TRUE) # aggregate TRUE # rounding apply_discounting(values = v_c_SoC, discount_rate = "costs", times = c(0, 1, 2), digits = 3) # use 3 digits apply_discounting(values = v_c_SoC, discount_rate = "costs", times = c(0, 1, 2), aggregate = TRUE, digits = 2) # round to 2 decimals ## ----example-value------------------------------------------------------------ c_PV_150 <- apply_discounting(values = 150, discount_rate = "costs", times = 4) cat("Present Value of", 150, " Euro in", 4, "years at", 3, "% =", round(c_PV_150, 2), "\n") ## ----exmple-sick-sicker-monthly----------------------------------------------- # Use the annual model data("data_model_output_sick_sicker", package = "tatooheene") l_m_M_monthly <- data_model_output_sick_sicker$l_m_M_monthly l_u_monthly <- data_model_output_sick_sicker$l_u_monthly head(l_m_M_monthly[["Standard of care"]]) tail(l_m_M_monthly[["Standard of care"]]) # here you see this file has more cycles compared to the annual model # Apply the utilities for the monthly cycles v_Q_SoC_monthly <- l_m_M_monthly[["Standard of care"]] %*% l_u_monthly[["Standard of care"]] n_undiscounted_Q_SoC_monthly <- sum(v_Q_SoC_monthly) # get the undiscounted QALYs n_undiscounted_Q_SoC_monthly # Apply discounting without discounting in the first year cycle_length <- 1/12 # cycle length in fraction of a year v_times_monthly <- seq(from = 0, to = (length(v_Q_SoC_monthly) - 1) * cycle_length, by = cycle_length) v_times_monthly[1:((1/cycle_length))] <- 0 v_times_monthly[1:20] # print first twenty items to show times vector v_QALY_dis_Sick_Sicker_monthly <- apply_discounting(values = v_Q_SoC_monthly, discount_rate = "effects", times = v_times_monthly) # This gives the discounted QALYs n_discounted_Q_SoC_monthly <- round(sum(v_QALY_dis_Sick_Sicker_monthly), 3) n_discounted_Q_SoC_monthly