
R Markdown Basics

Paul Johnson, Director, CRMDA <pauljohn@ku.edu>

Feb. 20, 2024

Abstract

This discusses the basics of ‘R markdown‘ that are important for authors who want

to prepare documents that go beyond the bare rudiments of markdown. In our Center,

we expect all authors who prepare documents with ‘R markdown‘ should understand

the potential and limitations of markdown when they use it.

Introduction: Terminology

Markdown (John Gruber, https://daringfireball.net/projects/markdown) is a different
way to write documents that include computer code. It started as a replacement for HTML
code used in Websites. Because HTML and LaTeX markup was tedious and unreadable,
he proposed instead a markdown language. The intention was to have documents that are
understandable for non-technical readers, but capable of presentation as Web pages or PDF
document. The aspirations of the markdown community are now considerably broader. There
are many competing dialects of the markup language. There are efforts to generalize the back
end format to Open Document, Microsoft Word, and other formats.

R markdown is a particular kind of markdown document. Authors should be cautious about
following formatting advice for other types of markdown when working on R markdown. The
distinguishing feature of R markdown is that it cooperates with R. Like LATEX with Sweave,
code chunks can be included. When the document is compiled, the code is executed in R and
results are tabulated into the output (“knitting” the chunks). The chunk conversion process
creates an intermediate file format, usually a pandoc markdown file, often with a suffix like
.utf8.md. That markdown document is then converted to the eventual back end format
through one or more additional transitions.

It is important to remember that R markdown is not the same as “markdown,” for which
there are many different dialects. The markdown standard to which R markdown is closest
is pandoc markdown because the program pandoc is widely used to convert the .utf8.md

file into HTML or PDF. However, that is not necessarily the case. On many Web servers, a
program called Jekyl (https://jekyllrb.com/) is used to convert markdown files to static
HTML pages for quick rendering.

1425 Jayhawk Blvd
Watson Library, Suite 470
Lawrence, KS 66045-7594

Phone: 785-864-3353
Web: http://crmda.ku.edu

Email: crmda@ku.edu

mailto:pauljohn@ku.edu
https://daringfireball.net/projects/markdown
https://jekyllrb.com/
http://crmda.ku.edu
mailto:crmda@ku.edu

The R packages knitr and rmarkdown provide functions required to convert code chunks and
create the intermediate markdown document. The free-standing program pandoc plays the
pivotal role in most personal computer applications. It converts markdown files to HTML or
LaTeX.

Refer Elsewhere for Comprehensive Instructions

We thought we might make YAMG, Yet Another Markdown Guide, but now elect instead to
explain the big picture issues and focus on practical problems that we expect authors to have
when they use the stationery document classes.

Reference Guides from the RStudio Corporation (and affiliates)

1. R Markdown Reference Guide. Keep a copy of this document available.
2. An RStudio oriented guide, R Markdown Cheatsheet

3. Markdown Basics. See also the R markdown page at Rstudio corporation, http://
rmarkdown.rstudio.com, which offers a “Get Started” Tutorial.

4. Yihui Xie. 2015. Dynamic Documents with R and Knitr. 2ed Boca Raton, Florida:
Chapman Hall/CRC. http://yihui.name/knitr.

5. On July 7, 2017, Xie made available a new book manuscript, bookdown: Authoring

Books and Technical Documents with R Markdown.

User-friendly overviews and tutorials on R markdown usage.

1. Cosma Shalizi, “Using R Markdown for Class Reports”, http://www.stat.cmu.edu/
~cshalizi/rmarkdown.

2. Wisconsin University Social Science Computing Collaborative. “R for Researchers: R
Markdown”.
http://www.ssc.wisc.edu/sscc/pubs/RFR/RFR_RMarkdown.html

3. Karl Broman, “Knitr with R Markdown”.
http://kbroman.org/knitr_knutshell/pages/Rmarkdown.html

In my experience, there are several document features that can be produced with R markdown,
but just about as many LaTeX features are no available via pure markdown. That puts us in
a “gray area,” where we are either forced to change our writing style or code the document
differently. This is discussed in the section .

Document-wide options

R markdown is prepared in a text document that has two parts. The first part, which can
be referred to as the header or preamble, includes “metadata”. The metadata is information
about the document, the authors, and how it must be compiled.

Page 2 of 19

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf
http://rmarkdown.rstudio.com/authoring_basics.html
http://rmarkdown.rstudio.com
http://rmarkdown.rstudio.com
http://rmarkdown.rstudio.com/lesson-1.html
http://yihui.name/knitr
https://bookdown.org/yihui/bookdown
https://bookdown.org/yihui/bookdown
http://www.stat.cmu.edu/~cshalizi/rmarkdown
http://www.stat.cmu.edu/~cshalizi/rmarkdown
http://www.ssc.wisc.edu/sscc/pubs/RFR/RFR_RMarkdown.html
http://kbroman.org/knitr_knutshell/pages/Rmarkdown.html

The header is written in the YAML format (YAML originally meant Yet Another Markup

Language, now stands for YAML Ain’t Markup Language; see The Official YAML Web Site).

The header for the document you are reading now in PDF is:

title: "R Markdown Basics"

author:

- affiliation: CRMDA

description: Director

email: pauljohn@ku.edu

name: Paul Johnson

output:

pdf_document:

fig_caption: true

keep_tex: true

latex_engine: pdflatex

highlight: haddock

citation_package: natbib

pandoc_args: [--listings]

template: "theme/report-template.tex"

fontsize: 12pt

vignette: >

%\ VignetteIndexEntry{stationery}

%\ VignetteEngine{knitr :: rmarkdown}

%\ VignetteEncoding{UTF-8}

header-includes:

- |

```{=latex}

\usepackage{xcolor}

\usepackage{fancybox}

\usepackage{calc}

\usepackage{subfig}

```

addr:

l1: 1425 Jayhawk Blvd

l2: Watson Library , Suite 470

l3: Lawrence , KS 66045 -7594

r1: "Phone: 785 -864-3353"

r2: "Web: http://crmda.ku.edu"

r3: "Email: crmda@ku.edu"

logo: theme/logo.pdf

keywords: guides , report , pandoc , R markdown , sweave , knitr

Page 3 of 19

http://yaml.org

Observations about YAML

Parameter and values (key:value pairs) are separated by :.

One must use the colon, not (NOT!) the equal sign).

Logical values are specified by lowercase, unquoted true, false, or null. If a value (say, a
document title) includes a colon, quotation marks should be used.

Finding the correct keys

Authors will need to acquire experience about valid keys for their intended output format.
The key: value pairs in the header are meaningful if the document processing software takes
them into account. The correct keys are specified in the document template, so they vary
from one document template to another. Otherwise, they are just decorations that on which
authors waste their time. To test that idea, authors might insert this in the header of the
current document

christmaslist: "pandora account", "gold watch"

and recompile. There are no errors or warnings about unrecognized key values.

Flush-left key values are either top-level parameters (title, date, fontsize) or initiators
of metadata blocks. The header-includes section is relevant only to the LATEX stage of
document preparation.

The structure of the author and addr blocks is unique to the template that governs this
document (the template is specified in the output block). With different templates, the
format of the key:value author information will differ.

The format is of the YAML header is VERY sensitive.

A. The header begins with three dashes, in column 1:

and ends with three dashes, in column 1

B. Subsections are represented by indentation. The leading users of R markdown prefer
indentation using 2 spaces, not 4 as in base R code. We follow that in this document.

C. Errors in formatting are fatal. Using tabs to indent YAML code leads to a fatal error .
Thankfully, the error messages point directly at the offending line in the header. Inserting a
tab before highlight: haddock results in this error:

Error in yaml:: yaml.load(string , ...) :

Scanner error: while scanning a plain scalar at line 10,

column 19

Page 4 of 19

found a tab character that violate intendation(sic) at line

11, column 1

Calls: rmd2pdf ... parse_yaml_front_matter -> yaml_load_utf8

-> <Anonymous >

Execution halted

The output stanza specifies the back end format

In the stationery package, we are focused primarily on HTML and PDF because, at the
current time, these formats are the most dependable.

The output specification in this document means that the function pdf_document in the
markdown package will be used to create an output object. The .Rmd file is converted to
pandoc markdown, .utf8.md, then into LATEX, then PDF.

It is tricky for authors to figure out which keys will work, and how their values will be
specified. Lamentably, it may be necessary to read the source code of an R package like
rmarkdown to understand all of the details. However, usually, there is some relief in the
fact that there is one example working document to exemplify the settings for a particular
back end and authors can adjust and modify those values. The key:value pairs may may a
difference at several stages in the compilation process.

Users should be aware that a moderately complex R markdown document will usually be a
success only if it is built with a particular output format in mind. Many document components
are created with PDF or HTML output in mind and they are not generally compatible with
both. The number of “cross-compiling” gotchas will probably decline with time, but currently
there are many difficulties awaiting someone who writes a document intended for HTML and
later wants to generate PDF from the same markdown document.

It is also worth mentioning that the RStudio pulldown button Knit can be misleading. It
creates the impression that one can choose freely between “Knit to PDF” or “Knit to HTML,”
but that will usually fail. Be warned also that Rstudio will revise the content of the document
header, possibly corrupting its formatting.

render equals knitr + pandoc

The process for rendering documents is discussed in the stationery vignette. The key point
is that the code chunks must be digested by R and replaced with valid input and output
text. After that, the document is converted by a sequence of transitions, .Rmd to .utf8.md

to .tex to .pdf.

The conversion of the .Rmd file into pandoc markdown is known as “knitting”. It is the same
functionality that is performed by “sweaving” an R noweb .Rnw LATEX document. The knitr
package for R plays a vital role because it has the procedures that make this an R markdown

document, rather than just a markdown document with code examples pasted in.

Page 5 of 19

It is a little more difficult to understand the role of the rmarkdown package in the document
transition process. Perhaps the reader will find some ancient history to be helpful.

In the olden days, say 2014, we could write R markdown documents that did not require the
rmarkdown package. The workflow was simple.

1. Create a bare minimum YAML header

I once wrote a slide show called “Rmd on Rmd” and called the file rmdonrmd.Rmd. There was
almost no YAML at all.

title: "Rmd on Rmd"

author: "Paul E. Johnson"

That document included R code chunks. It had everything I needed to do at the time. Except
I did not understand the problem that the final format might be customized by an intricate
array of settings. The importance of those settings will become apparent if we continue the
story.

2. Render the document in 2 steps

To convert my cave-person markdown document to HTML, I would use 2 steps in the
command line. First, handle the chunks with knitr.

R CMD knit rmdonrmd.Rmd

That created a new file, rmdonrmd.md.

I wanted this to turn into a presentation document in a Web format, and somehow I found
out that if you told pandoc that your “to” format was S5, then a slidy presentation would be
created. So I ran:

$ pandoc rmdonrmd.md -t S5 -o rmdonrmd.html

The -o parameter indicates we want an output file rmdonrmd.html.

At that time, I did not understand very well the problem that a document that uses the
special features of one backend will generally be incompatible with other formats. As long as
the document does not use any special features, however, it can be converted to a slideshow
in PDF format. This (in 2014, at least) would generate that PDF:

$ pandoc rmdonrmd.md -t beamer -V theme:Warsaw -o rmdonrmd.pdf

The major danger, then and now, is that an incomplete the output file might be created.
Some document elements that we are counting on fail to appear. Incorrect LATEX markup
results in “blank spots” in Web output, for example.

Page 6 of 19

What’s wrong with the old way?

The people that are extremely deep in the details of document preparation know that there
are many details that authors might adjust. Do you want a table of contents? If yes,
how many headings do you want to include? Do you want code listings to have colored
backgrounds? How do you want keywords to be highlighted? Do you want figures to float
freely in the document? If so, what algorithm is to be used.

All of these features are in play and most of us–authors–don’t want to know all of the details
about how the R markdown document is turned into the eventual result. The authors of the
rmarkdown document are the ones who know the ins-and-outs and they created an elaborate
system that reads the keys in the markdown document and then reformats it and, most
importantly, calls pandoc with an immense list of command line options.

If I compile an R markdown document today, and I allow verbose output of the steps used to
build the document, I see, at the very end, the pandoc function call.

/usr/bin/pandoc +RTS -K512m -RTS rmdonrmd.utf8.md --to slidy

--from

markdown+autolink_bare_uris+ascii_identifiers+tex_math_single_backslash

--output rmdonrmd.html --smart --email-obfuscation none

--self-contained

--template

/usr/local/lib/R/site-library/rmarkdown/rmd/slidy/default.html

--include-in-header

/tmp/RtmpAa6kai/rmarkdown-str2de413c62f71.html

--mathjax --variable

' mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-A

--highlight-style pygments

Output created: rmdonrmd.html

This pandoc call converts a pandoc markdown file, rmdonrmd.uft8.md (which was created
from rmdonrmd.Rmd) into HTML.

In a nutshell, we need the rmarkdown package because it can deal with the immense complexity
of pandoc. The rmarkdown package is the glue. It creates output format objects that specify a
large family of sensible settings that are sent to pandoc. Because there were some complications
in the creation of documents with the custom templates in the stationery package, I had
to study the code in rmarkdown for quite a while. Every time I came away with just one
thought. It would have taken me several years to piece together all of those details.

Page 7 of 19

Preparing an R Markdown Document

Use a text editor

An R markdown file is suffixed “.Rmd”. It is a “raw text” file. Don’t edit it with MS
Word. Instead, use a programmers file editor, such as Emacs, Notepad++, or an integrated
development environment, such as RStudio, to edit the file.

Be considerate of the .Rmd document’s reader

Remember that the markdown philosophy is that a document should look reasonably nice,
even before it is compiled. That means authors should take care that their document has
reasonably “shaped” paragraphs. Lines should generally be 80 characters or less.

Document body has markdown, plus . . .

The body of the R markdown document can include both “markdown” syntax, which we hope
is compatible with either PDF or HTML backends, as well as a selection of backend-specific
code input. In a document with an HTML backend, authors can write “raw” HTML when
they can’t find R markdown syntax that works.

In our experience, it is also mostly workable to include LATEX
code in R markdown documents. Recall that documents in R markdown are converted from
Rmd to md by the knitting process, and then into LATEX by pandoc, and then into PDF by
a LATEX compiler (pdflatex, xetex or similar). As a result, one can insert quite a bit of
LATEX code and it will often be successfully post-processed in the last stage of document
compilation.

We have found that some LATEX code does not work well, however, so it is not possible at the
current time to say “everything works”. However, many things do work.

As in LATEX itself, when an author wants to add features, it is generally necessary to add
\usepackage{} statements in the LATEX
document preamble. We use a LATEX template for this document; it includes many packages.
Packages that are not included in the template can be tucked into the YAML preamble:

header-includes:

- \usepackage{amsmath}

We did not realize that amsmath was necessary until an author typed in a valid formula that
ended up with missing characters in the output file.

Basic R Markdown

These are the most frequently used markdown idioms that work well in both HTML and
PDF backends. These things work well in either backend because they are understood to

Page 8 of 19

pandoc, which has the job to convert the markdown document into either LATEX or HTML.

1. Character styling.

• Italics result from asterisks (*italics*)
• bold face results from two asterisks (**boldface**).
• Inline computer code should be a typewriter fixed width font produced by using
two “backticks” (‵computer code‵)

2. Section headers.

• # is level 1 header
• ## is level 2 subheading
• levels below are used differently in HTML and PDF. The ability of html documents
to include specialized subsections is one of the advantages of that backend. In R
markdown,6 levels of headings are allowed.

There is a problem to be aware of. A section header may not have a linebreak in it.

An error so simple as writing a section title that has a line wrap will cause poor quality
output.

3. Paragraph styling

• Paragraphs are created by blank lines
• Single-spaced line: Two blank spaces at end of line signify a new line without
creating new paragraph (blank line) below.

• Block quotes: Indented material like this:

Shall I compare thee to a summer’s day? Thou art more lovely and more
temperate.

begins with a > character in column 1, followed by a space:

Shall I compare thee to a summer ' s day?

Thou art more lovely and more temperate.

The second and following lines should be entered without blank lines.

• code listings that are not R chunks, such as

int x = 3

are requested by three ticks before and after

```

int x = 3

```

4. Lists.

Page 9 of 19

• Numbered lists can be created by putting a number in column 1 of a new line,
followed by a period.

• Unnumbered (Bullet) lists can be created by putting an asterix in column 1 of a
new line, followed by a space.

• Lists can be nested by typing four blank spaces for each level of nesting.
– A continuation of the existing list’s style can be obtained by inserting a plus
sign.

• It is possible to insert paragraphs within lists. These should be indented 3 spaces.

5. Hyperlinks, such as CRMDA, for which the markdown is [CRMDA](https://crmda.ku.edu).

6. Citations. Need to know how to use natbib citations in a markdown document ?? ???

This basic markdown is compatible with either HTML or PDF output. While I am writing in
a document intended for PDF, I can use LATEX code \emph{italicize} to italicize, as you
can see, but I can also use markdown syntax *italicize* to italicize. If I were intending
this document for HTML, I could insert <i>italicize</i> to reach the same result.

Where feasible, we should use the generic markdown syntax rather than backend-specific
markup, because this keeps open the door that we might want to change the backend from PDF
to HTML at some point. Of course, the key assumption is that the backend-neutral methods

actually work to get the job done, and that is simply untrue in my experience. Nevertheless,
this is a valuable aspiration and it is a focal point of current software development.

Math in Markdown documents

There’s a fairly broad range of mathematical markup that will work in R markdown documents
intended for PDF and HTML. So far as we can tell, documents intended for PDF (which can
add LATEX packages) can exploit all of the mathematical features, while HTML documents
do not have that same advantage. There are other weaknesses in the math tool chain for
HTML documents, to which we shall return.

Here are the highlights.

1. In-line math markup is dollar-sign bracketed, just as in LATEXitself. We write $f_{ij}
x_{i} \times y_{j}^2$ for fijxi × y2

j . Using the usual LATEX format, we can write
the Greek letters, binary relations, and other important symbols. Behold:

α, β, γ, Γ, χ, ≈, ̸=, ≥, ≤, ±, ∼, →, π, and∞.

2. Displayed equations–equations that are centered or otherwise set apart from the text–
can be bracketed by \[and \]. In LATEX, it is not longer recommended to use the
double-dollar sign notation for displayed equations.

Compare the inline mode, x̄ =
1

n

∑n
i=1

xi with the display equation:

Page 10 of 19

https://crmda.ku.edu

x̄ =
1

n

n
∑

i=1

xi.

that results from

\[

\bar{x} = \frac {1}{n} \sum_{i=1}^{n}x_{i}.

\]

After some testing, it appears that in order to have equations with numbers (via labels,
allowing cross references), the best avenue is to change the display markup to use amsmath
equations. In the following, we use the LATEX \begin{equation}, which comes from the
LATEX package amsmath.

\begin{equation}

\bar{x} = \frac {1}{n} \sum_{i=1}^{n}x_{i}.

\label{eq:mean}

\end{equation}

This equation is numbered, because the label macro is included within the equation:

∫

βαΨΞx̄ =
1

n

n
∑

i=1

xi. (1)

Because we labeled the equation, we can now use cross references. For example, as the reader
can see in equation (1), the arithmetic mean is a very lovely formula. If we insert equations
before or after that one, they will be renumbered automatically and cross references will be
adjusted.

Another benefit of introducing the amsmath support is that arrays can be demonstrated.

Am,n =

a b c

d e f

g h i

 (2)

Given the fact that the equation environment provides all of the needed features, it seems
obvious that authors should prefer to use it, rather than the simpler \[markup.

This is not the right place for a comprehensive guide to LATEX. Users will need to install
a LATEX distribution and then a user-friendly editor that will help create equation markup.
Many users in the CRMDA lab use LyX, which offers a “View source” feature to inspect
LATEX coding for equations.

Page 11 of 19

Syntax and code chunks

Code chunks are discussed in a separate vignette that is available with the stationery

package, “Code Chunks”. Code chunks are allowed in R markdown documents intended for
either HTML or PDF.

In R markdown documents intended for HTML output, knitr is the only chunk-processing
technology that is available. In R markdown documents, the outer boundaries of a chunk
are demarcated by three back ticks, along with squiggly braces and the letter “r”, which
designates the language being processed (knitr can handle several languages).

```{r}

lm(y ∼ x, data = dat)

```

In contrast, a chunk in a noweb/LATEX document would look like this:

<< >>=

lm(y ∼ x, data = dat)

@

Options which control chunk management are quite elaborate in knitr, but most authors will
find that there are 5 (or so) options that they use frequently and the others can be discovered
in the documentation when emergencies arise:

1. eval
2. echo
3. include
4. results

These control if the chunk is calculated, displayed, and included in the output.

knitr has fine grained settings for sizing, saving, and placing figures. These are discussed in
our vignette, “Code Chunks”. We expect that all authors will not have too much difficulty
creating chunks that

1. are not evaluated, but are displayed “beautifully” to the reader.
2. are not displayed, but are evaluated, and the results may (or may not) be displayed for

the reader.
3. create graphics, which are automatically included in the document.
4. create graphics (or other files) that are not automatically included in the document.

Graphics are saved in image files that can be inserted at a different part in the document
5. import previous chunks for re-analysis.

Presentable tables

In a report document, it would be unusual to display a large chunk of R code or output.
Instead, reports typically include stylized tables, graphs, and equations.

Page 12 of 19

Unfortunately, this is a point at which the backend-neutral document processing strategies
break down. Markdown allows some elementary tables, but these are unsuitable for statistical
tables. Instead, one needs to create backend-specific tables in order to have something
presentable.

The very nice table-making routines for R were originally developed for PDF/LATEX, and
alternative backends like HTML were added later. At the current time, regression tables can
be generated in either LATEX or HTML by the R package texreg, xtable, rockchalk, and
many others.

Warnings aside, here are 2 table-making recipes

I have used two approaches to include tables in documents.

1. The “automatic” method. Write a code chunk that creates an output table that is good
enough to go into the report without revision and allow the document to use it. The
chunk option results="asis" is used to signal that the result of the chunk is valid
markup that is to go directly into the backend document.

2. The “slow lane” method. Write a chunk that creates a table in a file on disk. Then one
can review and edit the file, and include it in the document manually.

In “guides” and less formal documents, I often use the automatic method (beauty of presen-
tation is not the primary emphasis). In reports to clients, I often need to use the second
method because tables almost never come out in a perfectly presentable format.

Because I wrote the outreg function in the rockchalk a long time ago, it still holds a
special place in my heart. I will use it for a demonstration. outreg works with standard
R regressions (lm, glm). Suppose we have data about cancer prevalence (y) and predictors
including exposure to plutonium (x1), vegetables (x2), and tobacco (x3).

Regressions are estimated. The second regression includes interactions.

m1 <- lm(y ∼ x1 + x2 + x3 , data = dat)

m2 <- lm(y ∼ x1 + x2*x3 + x1*x3 , data = dat)

The variable labels are created as varLab and they are supplied in the call to outreg.

```{r reg20 , results="asis"}

varLab <- c(y = "Cancer", x1 = "Plutonium", x2 = "Veggies",

x3 = "Tobacco", `x2:x3 ` = "Veg $\\ times$ Tob",

`x1:x3 ` = "Plut $\\ times$ Tob")

or10 <- outreg(list("Cancer OLS" = m1 , "Cancer Interaction" =

m2),

tight=FALSE , varLab = varLab)

```

The table is inserted flush left in the document at the point of the code chunk because I did
not create a floating table object in which to situate it.

Page 13 of 19

Table 1: Regression Analysis

Cancer OLS Cancer Interaction
Estimate (S.E.) Estimate (S.E.)

(Intercept) -727.601*** (5.699) -209.096*** (14.077)
Plutonium 16.052*** (0.087) 11.058*** (0.248)
Veggies 14.031*** (0.119) 8.363*** (0.228)
Tobacco -0.058 (0.123) -10.615*** (0.288)
Veg × Tob 0.112*** (0.004)
Plut × Tob 0.101*** (0.005)
N 1000 1000
RMSE 27.272 17.234
R2 0.987 0.995
adj R2 0.986 0.995

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

Cancer OLS Cancer Interaction
Estimate (S.E.) Estimate (S.E.)

(Intercept) -727.601*** (5.699) -209.096*** (14.077)
Plutonium 16.052*** (0.087) 11.058*** (0.248)
Veggies 14.031*** (0.119) 8.363*** (0.228)
Tobacco -0.058 (0.123) -10.615*** (0.288)
Veg × Tob 0.112*** (0.004)
Plut × Tob 0.101*** (0.005)
N 1000 1000
RMSE 27.272 17.234
R2 0.987 0.995
adj R2 0.986 0.995

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

The other way to do this is to save the table in a file, and then include it in a document. I
do this in some reports because the LATEX (or HTML) tables created by software are never
exactly right and I want to fine tune them.

cat(or10 , file = "tmpout/or10file.tex")

The file “or10file.tex” can be edited by hand, and then inserted into the LATEX document (for
the PDF backend). If I am using this method, I can insert a floating table with a proper
caption and label. See Table 1, which results from the following.

\begin{table} \caption{Regression Analysis\label{tab:reg30 }}

\input{tmpout/or10file.tex} \end{table}

Admittedly, this two step process to create the floating LATEX label is not truly necessary.
The outreg function could do that for us. The same result using the results=“asis” chunk:

Page 14 of 19


```{r reg40 , results="asis"}

or10 <- outreg(list("Cancer OLS" = m1 , "Cancer Interaction" =

m2), tight=FALSE ,

varLab = varLab , title = "Regression Analysis

asdfasdf",

label="tab:reg30")

```

Because this document is intended for the PDF backend, any LATEX
generating table function should work. For linear regressions, multilevel models, and glm fits,
I find the rockchalk::outreg output is fine, but other kinds of models often arrive with
custom table-making routines. I have not found a single approach that works beautifully
for all kinds of regressions, and I expect other authors will say the same thing because new
packages to create LATEX tables seem to crop up in the R repositories on a monthly basis. It
is worth mentioning that some of the LATEX table generators, like texreg, allow the use of
bookman markup to beautify the placement of horizontal lines, so the document preamble
must be modified to include that package.

I often need to include simpler tabular material in documents and I always try to use the
package xtable. xtable is not the simplest package, but it has been around longer than the
others and it has more detailed features than any other package. In particular, the longtable
class, which allows tables that gracefully split over “page breaks”, is available. If I cannot get
the result I want with xtable, the second approach I try is the latex function in the Hmisc
package. There are plenty of other table-making R packages, but my opinion is that if one
can master xtable, then one can generate just about any kind of table.

Warnings, cautions, etc.

Dialects

R markdown is similar to, but the exactly the same, as the general markdown specification.
It is different from other specialized dialects, such as the GitHub Flavored Markdown and
other variants. Be cautious about using style guides that are not intended explicitly for
R markdown documents. There is a good chance the advice about preparing a document from
those other sites is irrelevant to an R markdown document. Google searches will sometimes
lead to the wrong answer for a particular form of Markdown.

Inaccurate rendering

Another major concern is that illegal LATEX code in documents intended for HTML will be
ignored in the document production process. The document compiles without error, but
HTML result is incomplete. Where we expect to see math, there is empty nothing. By itself,
this problem seems serious enough to make me think the HTML backend should not be used.
The markdown → HTML conversion is the weak spot. The markdown → PDF transition is

Page 15 of 19

https://daringfireball.net/projects/markdown
https://github.github.com/gfm

not similarly flawed. It halts with error messages. The conclusion from all of this is the
following:

Authors must exert themselves to proofread the HTML output to make sure it

appears as intended.

Another problem we have discovered is that even valid HTML markup can sometimes be
corrupted by pandoc. Valid HTML (and PDF, for that matter) can include empty spaces
that are inserted by authors to make their markup easier to read. The spaces are confusing
to pandoc, which may interpret them as markdown formatting statements (markdown uses
spaces to indicate nesting of lists or code sections. At the current time, it appears to be
necessary to process all HTML markup that goes into the markdown document to remove
spaces in the beginning of lines.

In our experimentation with R markdown, we have noticed another quirk. I document intended
for PDF, one writes \LaTeX to produce LATEX. On the other, in a document intended for
HTML, writing \LaTeX produces one of those empty spaces previously mentioned. Instead,
in the document intended for HTML one must insert \LaTeX, as if this were a valid
mathematical expression, which it is not. Inserting \LaTeX in R markdown intended for
PDF results in an error message:

! You can ' t use `\spacefactor ' in math mode.

\@- >\ spacefactor

\@m {}

l.934 ...to compile and the error message \(\ LaTeX

pandoc: Error producing PDF

Mathjax needed for HTML documents

Finally, there is a fundamental weakness of HTML documents. Math is not“in” the HTML file.
Instead, there is javascript code that is shown in the Web browser using a framework called
MathJax. MathJax allows inclusion of math markup in the page which–when the conditions
are right–can be converted by the Web browser to look like equations. The MathJax display
system works better and better over time; it almost always works. The Web browser must be
able to retrieve files from the MathJax server in order to display the document. If the reader
is offline, or the MathJax server fails. Users will see markup, rather than equations, when
the network fails.

Illegal encoding of pasted fonts

While working on this document, I found a web page with a lovely Shakespeare sonnet. I
carelessly copy/pasted that into a code listing. Look what happened at compile time:

pauljohn@delllap-16:vignettes$./rmd2html.sh Rmarkdown.Rmd

Error in tools :: file_path_as_absolute(output_file) :

Page 16 of 19

file ' Rmarkdown.pdf ' does not exist

Calls: rmd2html -> do.call -> <Anonymous > -> <Anonymous >

In addition: Warning messages:

1: In grep(paste(r, collapse = "|"), text , value = TRUE) :

input string 1312 is invalid in this locale

2: In grep("^\\s*$", x) : input string 1312 is invalid in this

locale

3: In grep("^! ", x) : input string 1312 is invalid in this

locale

4: In grep("^\\s*$", x) : input string 1312 is invalid in this

locale

5: In grep("^! ", x) : input string 1312 is invalid in this

locale

6: In file.rename(file_with_ext(texfile , "pdf"), output_file) :

Execution halted

The error message means that there were some characters in the web page that were encoded
in an unfamiliar format.

Bibliographical citation test is appropriate.

A citation with name and date is obtained as (Diggle, Heagerty, Liang, & Zeger, 2013). A
citation that with just the date, i.e., Diggle and colleagues (2013, 37) is obtained differently.
To get the full parenthesized statement with names and dates, we insert hard brackets [, an
@ sign, the bibtex tag, and acloser]. If we don’t want their names, we insert a - sign. It is
also possible to refer to a group of projects (Fitzmaurice, Laird, & Ware, 2011; Hsiao, 2014;
McCullagh & Nelder, 1983).

In HTML output, the references are always generated as the very last piece of the document.
We insert a section name in the very last line to prepare for than.

References

In HTML output, the style of the bibliography will not match what we generally want. What
we get is close, the Chicago author-year format. We need a “CSL” file to alter the style of the
output. See authoring bibliographies and citations.

If the back end is PDF, as in this document, there is some more encouraging news. A
combination of YAML header magic and some“raw”LaTeX succeeds in creating a bibliography
for this document.

Conclusion

For the sake of clarity, then, I state the following:

Page 17 of 19

http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html

If the backend in PDF, one should should use functions that provide tables using
LATEX code.

On the other hand,

if the backend is HTML, then functions that create HTML markup code should
be used.

Session Info

warnings ()

sessionInfo ()

R version 4.3.1 (2023 -06-16)

Platform: x86_64-pc-linux-gnu (64 -bit)

Running under: Ubuntu 23.10

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/Chicago

tzcode source: system (glibc)

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] psych_2.4.1 pander_0.6.5 rockchalk_1.8.157

[4] stationery_1.1

loaded via a namespace (and not attached):

[1] Matrix_1.6-1 jsonlite_1.8.8 compiler_4.3.1

[4] highr_0.10 Rcpp_1.0.12 zip_2.3.1

[7] parallel_4.3.1 jquerylib_0.1.4 splines_4.3.1

Page 18 of 19

[10] boot_1.3-28.1 yaml_2.3.8 fastmap_1.1.1

[13] lattice_0.21-8 R6_2.5.1 plyr_1.8.9

[16] openxlsx_4.2.5.2 knitr_1.45 kutils_1.73

[19] MASS_7.3-60 nloptr_2.0.3 minqa_1.2.6

[22] bslib_0.6.1 rlang_1.1.3 cachem_1.0.8

[25] stringi_1.8.3 xfun_0.42 sass_0.4.8

[28] cli_3.6.2 digest_0.6.34 grid_4.3.1

[31] xtable_1.8-4 lme4_1.1-35.1 lifecycle_1.0.4

[34] nlme_3.1-163 mnormt_2.1.1 evaluate_0.23

[37] carData_3.0-5 foreign_0.8-84 rmarkdown_2.25

[40] tools_4.3.1 htmltools_0.5.7

Available under Created Commons license 3.0

References

Diggle, P., Heagerty, P., Liang, K.-Y., & Zeger, S. (2013). Analysis of Longitudinal Data

(2nd ed.). Oxford: Oxford University Press.
Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd

ed.). Hoboken, N.J: Wiley.
Hsiao, C. (2014). Analysis of panel data (3rd ed.) (No. 54). New York, NY: Cambridge

University Press. (OCLC: ocn872561839)
McCullagh, P., & Nelder, J. A. (1983). Generalized Linear Models (No. 37). London:

Chapman and Hall.

Page 19 of 19

https://creativecommons.org/licenses/by/3.0/

	Introduction: Terminology
	Refer Elsewhere for Comprehensive Instructions
	Reference Guides from the RStudio Corporation (and affiliates)
	User-friendly overviews and tutorials on R markdown usage.

	Document-wide options
	Observations about YAML
	Parameter and values (key:value pairs) are separated by :.
	Finding the correct keys
	The format is of the YAML header is VERY sensitive.
	The output stanza specifies the back end format

	render equals knitr + pandoc
	1. Create a bare minimum YAML header
	2. Render the document in 2 steps
	What's wrong with the old way?

	Preparing an R Markdown Document
	Use a text editor
	Be considerate of the .Rmd document's reader
	Document body has markdown, plus \ldots

	Basic R Markdown
	Math in Markdown documents
	Syntax and code chunks
	Presentable tables
	Warnings aside, here are 2 table-making recipes

	Warnings, cautions, etc.
	Dialects
	Inaccurate rendering

	Mathjax needed for HTML documents
	Illegal encoding of pasted fonts
	Bibliographical citation test is appropriate.

	Conclusion
	Session Info

