
Package ‘spiro’
August 14, 2023

Title Manage Data from Cardiopulmonary Exercise Testing

Version 0.2.1

Description Import, process, summarize and visualize raw data from
metabolic carts. See Robergs, Dwyer, and Astorino (2010) <doi:10.2165/11319670-000000000-
00000> for more details on data processing.

License MIT + file LICENSE

URL https://github.com/ropensci/spiro,

https://docs.ropensci.org/spiro/

BugReports https://github.com/ropensci/spiro/issues

Encoding UTF-8

RoxygenNote 7.2.3

Imports ggplot2, xml2, readxl, knitr, cowplot, digest, signal

Suggests testthat (>= 3.0.0), vdiffr, rmarkdown, ggborderline

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Simon Nolte [aut, cre] (<https://orcid.org/0000-0003-1643-1860>),
Manuel Ramon [rev] (reviewed the package (v. 0.0.5) for rOpenSci, see

<https://github.com/ropensci/software-review/issues/541>),
James Hunter [rev] (reviewed the package (v. 0.0.5) for rOpenSci, see

<https://github.com/ropensci/software-review/issues/541>)

Maintainer Simon Nolte <s.nolte@dshs-koeln.de>

Repository CRAN

Date/Publication 2023-08-14 10:30:06 UTC

R topics documented:
spiro-package . 2
add_bodymass . 2

1

https://doi.org/10.2165/11319670-000000000-00000
https://doi.org/10.2165/11319670-000000000-00000
https://github.com/ropensci/spiro
https://docs.ropensci.org/spiro/
https://github.com/ropensci/spiro/issues
https://orcid.org/0000-0003-1643-1860
https://github.com/ropensci/software-review/issues/541
https://github.com/ropensci/software-review/issues/541

2 add_bodymass

add_hr . 3
add_protocol . 4
bw_filter . 5
get_anonid . 6
get_protocol . 7
knit_print.spiro . 7
print.spiro . 8
set_protocol . 9
set_protocol_manual . 10
spiro . 11
spiro_example . 14
spiro_import . 14
spiro_max . 15
spiro_plot . 16
spiro_raw . 18
spiro_smooth . 19
spiro_summary . 21

Index 22

spiro-package spiro: Manage Data from Cardiopulmonary Exercise Testing

Description

The spiro package enables a fast workflow with raw files from metabolic carts. It provides simple
tools for the import, processing, summary and visualization of cardiopulmonary exercise test data.

Main functions

• Use spiro for the import and processing of cardiopulmonary exercise testing data.

• Use spiro_summary and spiro_max for a step wise summary or the maximum parameter
values of the imported data.

• Use spiro_plot to visualize the data.

add_bodymass Calculate additional variables related to body mass for cardiopul-
monary exercise testing data

Description

add_bodymass() adds body mass-related variables to processed gas exchange data.

Usage

add_bodymass(data, bodymass = NULL)

add_hr 3

Arguments

data A data.frame of the class spiro containing the gas exchange data. Usually the
output of a spiro call.

bodymass A numeric value to manually set the participant’s body mass. Defaults to NULL
to use body mass data from the file’s meta data. Set to NA to ignore the meta
data without setting a new body mass.

Details

Based on an individual’s body mass, relative oxygen uptake (VO2_rel) and carbon dioxide output
(VCO2_rel) are calculated. For running protocols, running economy (RE) is calculated.

Value

A data.frame of the class spiro containing the cardiopulmonary exercise testing data including
variables related to body mass.

Examples

get example file
file <- spiro_example("zan_gxt")

s <- spiro(file)
out <- add_bodymass(s, bodymass = 65.3)
head(out)

add_hr Import and add heart rate data to cardiopulmonary exercise testing
data

Description

add_hr() imports an external file containing heart rate data and adds it to an existing gas exchange
data file.

Usage

add_hr(data, hr_file, hr_offset = 0)

Arguments

data A data.frame of the class spiro containing the gas exchange data. Usually the
output of a spiro call.

hr_file The absolute or relative path of a *tcx file that contains additional heart rate
data.

4 add_protocol

hr_offset An integer, corresponding to the temporal offset of the heart-rate file. By default
the start of the heart rate measurement is linked to the start of the gas exchange
measurement. A positive value means, that the heart rate measurement started
after the begin of the gas exchange measurements; a negative value means it
started before.

Details

Heart rate data will be imported from a .tcx file. After interpolating the data to full seconds, it is
then matched to the imported gas exchange data.

Value

A data.frame of the class spiro containing the cardiopulmonary exercise testing data including
heart rate data.

Examples

Get example data
oxy_file <- spiro_example("zan_ramp")
hr_file <- spiro_example("hr_ramp.tcx")

Import and process spiro data
oxy_data <- spiro(oxy_file)

Add heart rate data
out <- add_hr(oxy_data, hr_file)
head(out)

add_protocol Add a test protocol to an exercise testing data set

Description

add_protocol() adds a predefined test protocol to an existing set of data from an exercise test.

Usage

add_protocol(data, protocol)

Arguments

data A spiro data.frame containing the exercise testing data.
protocol A data.frame containing the test protocol, as created by set_protocol, set_protocol_manual

or get_protocol.

Value

A data.frame of the class spiro with cardiopulmonary parameters and the corresponding load
data.

bw_filter 5

See Also

set_protocol for protocol setting with helper functions.

set_protocol_manual for manual protocol design.

get_protocol For automated extraction of protocols from raw data.

Examples

Get example data
file <- spiro_example("zan_gxt")

s <- spiro(file)
out <- add_protocol(

s,
set_protocol(pt_pre(60), pt_steps(300, 50, 50, 7, 30))

)
head(out)

bw_filter Smooth data with a (zero-phase) Butterworth filter

Description

Internal function for spiro_smooth.

Usage

bw_filter(x, n = 3, W = 0.04, zero_lag = TRUE)

Arguments

x A numeric vector on which the digital filter should be applied

n Order of the Butterworth filter, defaults to 3

W Low-pass cut-off frequency of the filter, defaults to 0.04

zero_lag Whether a zero phase (forwards-backwards) filter should be applied.

Details

Digital filtering might be a preferable processing strategy for smoothing data from gas exchange
measures when compared to moving averages. Robergs et al. (2010) proposes a third order Butter-
worth filter with a low-pass cut-off frequency of 0.04 for filtering VO2 data.

It should be noted that Butterworth filter comprise a time lag. A method to create a time series with
zero lag is to subsequently apply two Butterworth filters in forward and reverse direction (forwards-
backwards filtering). While this procedure removes any time lag it changes the magnitude of the
filtering response, i.e. the resulting filter has not the same properties (order and cut-off frequency)
as a single filter.

6 get_anonid

Value

A numeric vector of the same length as x.

Examples

Get VO2 data from example file
vo2_vector <- spiro(spiro_example("zan_gxt"))$VO2

out <- bw_filter(vo2_vector)
head(out, n = 20)

get_anonid Get the anonymization id from personal data

Description

get_anonid() returns the anonymization id corresponding to given personal data.

Usage

get_anonid(name, surname, birthday = NULL)

Arguments

name A character string, containing the participant’s name as present in the raw data
file.

surname A character string, containing the participant’s surname as present in the raw
data file.

birthday A character string, containing the participant’s birthday as present in the raw
data file. If no birthday data is available in the raw data, this is ignored.

Details

By default, the spiro package anonymizes personal information obtained from file meta data. The
data are saved to the "info" attribute of a spiro() call. The default anonymization ensures that no
personal information is accidentally revealed, e.g. by sharing spiro outputs as .Rda files.

While there is no way to directly deanonymize the data, get_anonid() allows you to recreate the
ids, when meta data (name, surname and birthday) are known. Birthday is only used within the id
generation if available in the original raw data.

To disable the anonymization process during import use spiro(anonymize = FALSE)

Value

A character string, containing the anonymized id.

Examples

get_anonid("Jesse", "Owens", "12.09.1913")

get_protocol 7

get_protocol Guess a test protocol from a corresponding exercise testing data set

Description

get_protocol() gets the underlying test protocol based on given load data.

Usage

get_protocol(data)

Arguments

data A data.frame containing the exercise testing data. It is highly recommend to
parse non-interpolated breath-by-breath data or processed data with a very short
interpolating/averaging interval.

Value

A data.frame with the duration and load of each protocol step.

Examples

Import example data
raw_data <- spiro_raw(data = spiro_example("zan_gxt"))

get_protocol(raw_data)

knit_print.spiro Printing spiro data frames in a knitr context

Description

knit_print.spiro() provides a method for printing data.frames from spiro within knitr.

Usage

S3 method for class 'spiro'
knit_print(x, min = 10, max = 20, digits = 2, ...)

Arguments

x A data.frame of the class spiro to be printed.
min An integer, which sets the number of rows to which x will be limited in printing

if row number exceed max.
max An integer, setting the maximal number of rows to be not cut to min in printing.
digits An integer giving the number of decimals to be rounded to.
... Passing of additional arguments to knit_print.default().

8 print.spiro

Details

Cardiopulmonary exercise testing data imported by spiro will often come in large data.frames.
When knitting R Markdown documents these will normally be printed in full size.

This function provides a method for data.frames of the class spiro to limit the number of rows
displayed to min if it exceeds max. The number of hidden data rows will be printed below the
data.frame.

Value

The function prints its argument and returns it invisibly.

Examples

Get example data
s <- spiro(spiro_example("zan_gxt"))

knitr::knit_print(s)

print.spiro Printing spiro data frames

Description

Printing method for spiro objects that rounds output to two decimals.

Usage

S3 method for class 'spiro'
print(x, round = 2, ...)

Arguments

x A data.frame of the class spiro to be printed.

round An integer giving the number of decimals to be rounded to.

... Passing of additional arguments to print.data.frame().

Value

The function prints its argument and returns it invisibly.

Examples

Get example data
s <- spiro(spiro_example("zan_gxt"))

out <- print(s)
head(out)

set_protocol 9

set_protocol Setting an exercise testing profile

Description

set_protocol() allows to set a load profile for an exercise test based on profile sections.

Usage

set_protocol(...)

pt_pre(duration)

pt_wu(duration, load, rest.duration = 0)

pt_steps(
duration,
load,
increment,
count,
rest.duration = 0,
last.duration = NULL

)

pt_const(duration, load, count, rest.duration = 0, last.duration = NULL)

Arguments

... Functions related to sections of the load profile, such as pt_pre, pt_wu, pt_const
or pt_step. Sections will be evaluated in the order they are entered.

duration A number, giving the duration of the test section or a single load within the test
section (in seconds).

load A number, giving the (initial) load of a section.

rest.duration A number, specifying the duration of (each) rest (in seconds).

increment A number, giving the difference in load between the current and the following
load step.

count An integer for the number of load sections.

last.duration A number, giving the duration of the last load step (in seconds).

Value

A data.frame with the duration and load of each protocol step.

10 set_protocol_manual

Functions

• pt_pre(): Add pre-measures to a load protocol

• pt_wu(): Add a warm up to a load protocol

• pt_steps(): Add a stepwise load protocol

• pt_const(): Add a constant load protocol

See Also

set_protocol_manual for manual protocol design.

get_protocol for automated extracting of protocols from raw data.

Examples

set_protocol(pt_pre(60), pt_wu(300, 100), pt_steps(180, 150, 25, 8, 30))

set_protocol_manual Manually setting a testing profile

Description

set_protocol_manual() allows to set any user-defined load profile for an exercise test.

Usage

set_protocol_manual(duration, load = NULL)

Default S3 method:
set_protocol_manual(duration, load)

S3 method for class 'data.frame'
set_protocol_manual(duration, load = NULL)

Arguments

duration Either a numeric vector containing the duration (in seconds) of each load step,
or a data.frame containing columns for duration and load.

load A numeric vector of the same length as duration containing the correspond-
ing load of each step. Not needed, if load and duration are both given in a
data.frame as the first argument of the function.

Value

A data.frame with the duration and load of each protocol step.

spiro 11

Methods (by class)

• set_protocol_manual(default): Default method when duration and load are given sepa-
rately

• set_protocol_manual(data.frame): Method for data frames with a duration and a load
column

See Also

set_protocol for protocol setting with helper functions.

get_protocol For automated extracting of protocols from raw data.

Examples

set_protocol_manual(
duration = c(300, 120, 300, 60, 300),
load = c(3, 5, 3, 6, 3)

)

using a data.frame as input
pt_data <- data.frame(

duration = c(180, 150, 120, 90, 60, 30),
load = c(200, 250, 300, 350, 400, 450)

)
set_protocol_manual(pt_data)

spiro Import and process raw data from metabolic carts/spiroergometric
measures

Description

spiro() wraps multiple functions to import and process raw data from metabolic carts into a
data.frame.

Usage

spiro(
file,
device = NULL,
bodymass = NULL,
hr_file = NULL,
hr_offset = 0,
protocol = NULL,
anonymize = TRUE

)

12 spiro

Arguments

file The absolute or relative path of the file that contains the gas exchange data.

device A character string, specifying the device for measurement. By default the device
type is guessed by the characteristics of the file. This can be overridden by
setting the argument to "cortex", "cosmed", "vyntus" or "zan".

bodymass Numeric value for the individual’s body mass, if the default value saved in the
file should be overridden.

hr_file The absolute or relative path of a *tcx file that contains additional heart rate
data.

hr_offset An integer, corresponding to the temporal offset of the heart-rate file. By default
the start of the heart rate measurement is linked to the start of the gas exchange
measurement. A positive value means, that the heart rate measurement started
after the begin of the gas exchange measurements; a negative value means it
started before.

protocol A data.frame by set_protocol or set_protocol_manual containing the test
protocol. This is automatically guessed by default. Set to NA to skip protocol
guessing.

anonymize Whether meta data should be anonymized during import. Defaults to TRUE.
See get_anonid for more information.

Details

This function performs multiple operations on raw data from metabolic carts. It imports the raw
data from a file, which might be complemented by an additional .tcx file with heart rate data.

After using this function, you may summarize the resulting data frame with spiro_summary and
spiro_max, or plot it with spiro_plot.

Value

A data.frame of the class spiro with cardiopulmonary parameters interpolated to seconds and the
corresponding load data.

The attribute "protocol" provides additional information on the underlying testing protocol. The
attribute "info" contains additional meta data from the original raw data file. The attribute "raw"
gives the imported raw data (without interpolation, similar to calling spiro_raw).

Import

Different metabolic carts yield different output formats for their data. By default, this function will
guess the used device based on the characteristics of the given file. This behavior can be overridden
by explicitly stating the device argument.

The currently supported metabolic carts are:

• CORTEX (.xlsx, .xls or files .xml in English or German language)

• COSMED (.xlsx or .xls files, in English or German language)

• Vyntus (.txt files in French, German or Norwegian language)

spiro 13

• ZAN (.dat files in German language, usually with names in the form of "EXEDxxx")

The spiro function can import personal meta data (name, sex, birthday, ...). By default this data is
anonymized with anonymize = TRUE, see get_anonid for more information.

Processing

Breath-by-breath data is linearly interpolated to get data points for every full second. Based on the
given load data, the underlying exercise protocol is guessed and applied to the data. If no load data
is available or the protocol guess turns wrong, you can manually specify the exercise protocol
by using set_protocol or set_protocol_manual. If you want to skip the automated protocol
guessing without providing an alternative, set protocol = NA. Note that in this case, some functions
relying on load data (such as spiro_summary) will not work.

Additional variables of gas exchange are calculated for further analysis. Per default the body mass
saved in the file’s metadata is used for calculating relative measures. It is possible to specify
bodymass manually to the function, overriding that value.

Protocols, heart rate data and body mass information can also be given in a piping coding style
using the functions add_protocol, add_hr and add_bodymass (see examples).

Examples

get example file
file <- spiro_example("zan_gxt")

out <- spiro(file)
head(out)

import with user-defined test profile
p <- set_protocol(pt_pre(60), pt_steps(300, 2, 0.4, 9, 30))
out2 <- spiro(file, protocol = p)
head(out2)

import with additional heart rate data
oxy_file <- spiro_example("zan_ramp")
hr_file <- spiro_example("hr_ramp.tcx")

out3 <- spiro(oxy_file, hr_file = hr_file)
head(out3)

use the add_* functions in a pipe
Note: base R pipe requires R version 4.1 or greater)
Not run:
spiro(file) |>

add_hr(hr_file = hr_file, hr_offset = 0) |>
add_bodymass(68.2)

End(Not run)

14 spiro_import

spiro_example Get path to spiro example

Description

spiro_example returns the file path for example data files within the spiro package.

Usage

spiro_example(file = NULL)

Arguments

file Name of the file, either "zan_gxt", "zan_ramp" or "hr_ramp.tcx". Leave the
argument empty to get a vector with the paths of all three example files.

Value

A character vector with the absolute file path of the example file(s).

Examples

get path of a specific example data file
spiro_example("zan_gxt")

get all paths of example data files
spiro_example()

spiro_import Import raw data from spiroergometric devices (deprecated)

Description

This function has been deprecated as of package version 0.2.0. It will be removed in the next
version release. Please use spiro for automated import and processing or spiro_raw to import
only raw data.

Usage

spiro_import(file, device = NULL, anonymize = TRUE)

spiro_max 15

Arguments

file The absolute or relative path of the file that contains the gas exchange data.

device A character string, specifying the device for measurement. By default the device
type is guessed by the characteristics of the file. This can be overridden by
setting the argument to "cortex", "cosmed", "vyntus" or "zan".

anonymize Whether meta data should be anonymized during import. Defaults to TRUE.
See get_anonid for more information.

spiro_max Return maximum values from cardiopulmonary exercise tests

Description

spiro_max() returns a data.frame with the maximum gas exchange parameters of an exercise
test.

Usage

spiro_max(data, smooth = 30, hr_smooth = FALSE)

Arguments

data A data.frame of the class spiro containing the gas exchange data. Usually the
output of a spiro call.

smooth Parameter giving the filter methods for smoothing the data. Default is 30 for a
30-second moving average. "20b" will apply a 20-breath averaging for exam-
ple. See spiro_smooth for further details and filter methods (e.g. Butterworth
filters).

hr_smooth A logical, whether smoothing should also apply to heart rate data. Default is
FALSE, which means that the absolute maximum heart rate value is taken without
smoothing.

Details

Before calculating the maximum values, the raw data is smoothed. Default smoothing method is a
30-second rolling average. See the smooth argument in spiro_smooth for more options, such as
breath-based averages or digital filtering.

Parameters calculated are the maxima of oxygen uptake (absolute and relative), carbon dioxide
output, minute ventilation, respiratory exchange ratio (RER), and heart rate. The maximum values
are defined as the highest single data values after the smoothing.

For the maximum RER a different algorithm is used, as the RER during and after rest may exceed
the peak value during exercise. Therefore only values during the last ten percent of the exercise
time are considered for the RERmax determination. The RERmax calculation works best for data
from tests without rest intervals (e.g., ramp tests) and with attached load protocol data.

16 spiro_plot

Value

A data.frame with the maximum parameter values of the data.

Examples

Import and process example data sets
gxt_data <- spiro(file = spiro_example("zan_gxt"))

spiro_max(gxt_data)

Use an averaging over a time interval of 15 seconds
spiro_max(gxt_data, smooth = 15)

Use an averaging over an interval of 15 breaths
spiro_max(gxt_data, smooth = "15b")

spiro_plot Plot data from cardiopulmonary exercise data files

Description

spiro_plot() returns a ggplot2 graph visualizing data from cardiopulmonary exercise testing.

Usage

spiro_plot(
data,
which = 1:9,
smooth = "fz",
base_size = 13,
style_args = list(),
grid_args = list(),
vert_lines = FALSE

)

Arguments

data A data.frame of the class spiro containing the gas exchange data. Usually the
output of a spiro call.

which A numeric integer setting the plot panels to be displayed. The panels are num-
bered in the order of the traditional Wasserman 9-Panel Plot:

• 1: VE over time
• 2: HR and oxygen pulse over time
• 3: VO2, VCO2 and load over time
• 4: VE over VCO2
• 5: V-Slope: HR and VCO2 over VO2

spiro_plot 17

• 6: EQVO2 and EQVCO2 over time
• 7: VT over VE
• 8: RER over time
• 9: PetO2 and PetCO2 over time

smooth Parameter giving the filter methods for smoothing the data. Default is fz for
a zero phase Butterworth filter. See spiro_smooth for more details and other
filter methods (e.g. time based averages)

base_size An integer controlling the base size of the plots (in pts).

style_args A list of arguments controlling the color and size of lines and points. See the sec-
tion ’Customization’ for possible arguments. Additional arguments are passed
to ggplot2::theme() to modify the appearance of the plots.

grid_args A list of arguments passed to cowplot::plot_grid() to modify the arrange-
ment of the plots.

vert_lines Whether vertical lines should be displayed at the time points of the first warm-up
load, first load, and last load. Defaults to FALSE.

Details

This function provides a shortcut for visualizing data from metabolic carts processed by the spiro
function.

Customization:
There are three ways to customize the appearance of plots in spiro_plot. First, you can con-
trol the color and size of points and lines with the style_args argument. For a list of avail-
able arguments that should be passed in form of a list, see below. Second, you can change
the appearance of axis and plot elements (e.g, axis titles, panel lines) by passing arguments
over to ggplot2::theme() via the style_args argument. Third, you can modify the arrange-
ment of plots by the which argument and customize the arrangement by passing arguments to
cowplot::plot_grid() via the grid_args argument.

Style arguments:
size = 2 Defines the size of all points
linewidth = 1 Defines the width of all lines
color_VO2 = "#c00000", color_VCO2 = "#0053a4", color_VE = "#003300", color_VT = "grey30", color_RER = "#003300", color_HR = "red", color_pulse = "pink"

Define the color of lines and points in the following plot panels: VO2 (panel 3,6,9), VCO2
(3,4,5,6,9), VE (1), VT (7), RER (8), HR (2,5), pulse (2)

Additional arguments Are passed to ggplot2::theme()

Value

A ggplot object.

Examples

Import and process example data
ramp_data <- spiro(

file = spiro_example("zan_ramp"),

18 spiro_raw

hr_file = spiro_example("hr_ramp.tcx")
)

Display the traditional Wasserman 9-Panel Plot
spiro_plot(ramp_data)

Display selected panels, here V-Slope
spiro_plot(ramp_data, which = 5)

Modify the arrangement of plots by passing arguments to
cowplot::plot_grid() via the grid_args argument
spiro_plot(ramp_data, which = c(4, 5, 6, 8), grid_args = list(nrow = 1))

Modify the appearance of plots using the style_args argument
spiro_plot(ramp_data, style_args = list(size = 0.3, color_VCO2 = "black"))

Modify the appearance of plots by passing arguments to ggplot2::theme() via
the style_args argument
spiro_plot(ramp_data,

style_args = list(axis.title.x = ggplot2::element_text(colour = "green"))
)

spiro_raw Get raw data from a metabolic cart file or an imported spiro object

Description

spiro_raw() retrieves cardiopulmonary raw data from various types of metabolic cart files, or from
objects previously imported and processed with spiro.

Usage

spiro_raw(data, device = NULL, anonymize = TRUE)

Default S3 method:
spiro_raw(data, device = NULL, anonymize = TRUE)

S3 method for class 'spiro'
spiro_raw(data, device = NULL, anonymize = TRUE)

Arguments

data Either the absolute or relative path of the file that contains the gas exchange data,
or a data frame of the class spiro, usually the output of the spiro function.

device A character string, specifying the device for measurement. By default the device
type is guessed by the characteristics of the file. This can be overridden by
setting the argument to "cortex", "cosmed", "vyntus" or "zan".

anonymize Whether meta data should be anonymized during import. Defaults to TRUE.
See get_anonid for more information.

spiro_smooth 19

Details

The default way of importing data into the spiro package is using the spiro function. Besides im-
porting this will perform further processing steps such as the interpolation of data or the calculation
of additional variables. But in some cases the original raw data may be preferable compared to the
processed raw data. spiro_raw can either retrieve the raw data from an already imported data set
or from a new raw data file.

Value

A data.frame with data. The attribute info contains addition meta-data retrieved from the original
file.

Methods (by class)

• spiro_raw(default): Method for direct import from metabolic cart raw data file

• spiro_raw(spiro): Method for objects of class spiro, usually files previously imported and
processed with spiro

Examples

Get example data
file <- spiro_example("zan_gxt")

direct import of raw data
out <- spiro_raw(file)
head(out)

retrieval of raw data from previously processed object
s <- spiro(file)
out2 <- spiro_raw(s)
head(out2)

spiro_smooth Apply a smoothing filter to data from cardiopulmonary exercise test-
ing.

Description

Filter vectors and data frames with moving averages and digital filters. Provides the data filtering
for spiro_max and spiro_plot.

Usage

spiro_smooth(data, smooth = 30, columns = NULL, quiet = FALSE)

20 spiro_smooth

Arguments

data A data frame of the class spiro. Usually the output of the spiro function.

smooth An integer or character string specifying the smoothing strategy and parameters.
Default is 30, which means the applied filter is a 30-second moving average. See
the section ’Filtering Methods’ for more details.

columns A character vector of the data columns that should be filtered. By default the
filtering applies to all data column of data (besides load, time and step).

quiet Whether warning message should be suppressed. Default is FALSE.

Details

Raw data from cardiopulmonary is usually noisy due to measurement error and biological breath-
to-breath variability. When processing or visualizing the gas exchange data, it is often helpful to
filter the raw data. This function provides different filtering methods (time average, breath average,
digital filters).

Breath-based and digital filters will be applied on the raw breath-by-breath data. Time-based aver-
ages will be used on the interpolated data.

Value

A data frame

Filtering Methods

Time-Based Average (e.g. smooth = 30) A (centered) moving average over a defined time span.
The number can be given as an integer or as a character (e.g. smooth = "30") and defines the
length of the calculation interval in seconds.

Breath-Based Average (e.g. smooth = "15b") A (centered) moving average over a defined num-
ber of breaths. The integer before the letter ’b’ defines the number of breaths for the calculation
interval.

Butterworth filter (e.g. smooth = "0.04f3") A digital Butterworth filter (with lag). The number
before the letter ’f’ defines the low-pass cut-off frequency, the number after the letter ’f’ gives
the order of the filter. See bw_filter for more details.

Zero-lag Butterworth filter (e.g. smooth = "0.04fz3") A digital forwards-backwards Butterworth
filter (without lag). The number before the letter ’f’ defines the low-pass cut-off frequency,
the number after gives the order of the filter. See bw_filter for more details.

Examples

Get example data
file <- spiro_example("zan_gxt")
d <- spiro(file)

out <- spiro_smooth(d, 30)
head(out)

filter only the VO2 column with a zero-phase Butterworth filter

spiro_summary 21

out2 <- spiro_smooth(d, "0.04fz3", columns = "VO2")
head(out2)

spiro_summary Summarize data from cardiopulmonary exercise testing for each load
step

Description

spiro_summary() returns a data.frame summarizing the main parameters for each step of a car-
diopulmonary exercise test.

Usage

spiro_summary(data, interval = 120, quiet = FALSE, exclude = FALSE)

Arguments

data A data.frame of the class spiro, as it is generated by spiro.

interval An integer giving the length of the computational interval in seconds.

quiet A logical value, whether or not messages should be displayed, for example when
intervals are shortened for specific steps.

exclude A logical value, whether the last step should be excluded from the summary if
it was not completely performed.

Details

This function generates mean values of gas exchange and cardiac parameters for all steps of an
exercise test. The calculation returns the mean of a given interval before the end of each step.

If the interval exceeds the duration of any step, a message will be displayed. If the interval exceeds
the duration of all steps, it will be reset to the duration of the longest step. You can silence all
messages by setting quiet = TRUE.

When setting exclude = TRUE the function will check whether the last load step was terminated
early. If this was the case, the step will not be displayed in the summary.

Value

A data.frame with the mean parameters for each step of the exercise protocol.

Examples

Import and process example data
gxt_data <- spiro(file = spiro_example("zan_gxt"))

spiro_summary(gxt_data)

Index

add_bodymass, 2, 13
add_hr, 3, 13
add_protocol, 4, 13

bw_filter, 5, 20

get_anonid, 6, 12, 13, 15, 18
get_protocol, 4, 5, 7, 10, 11

knit_print.spiro, 7

print.spiro, 8
pt_const (set_protocol), 9
pt_pre (set_protocol), 9
pt_steps (set_protocol), 9
pt_wu (set_protocol), 9

set_protocol, 4, 5, 9, 11–13
set_protocol_manual, 4, 5, 10, 10, 12, 13
spiro, 2, 3, 7, 8, 11, 14–21
spiro-package, 2
spiro_example, 14
spiro_import, 14
spiro_max, 2, 12, 15, 19
spiro_plot, 2, 12, 16, 19
spiro_raw, 12, 14, 18
spiro_smooth, 5, 15, 17, 19
spiro_summary, 2, 12, 13, 21

22

	spiro-package
	add_bodymass
	add_hr
	add_protocol
	bw_filter
	get_anonid
	get_protocol
	knit_print.spiro
	print.spiro
	set_protocol
	set_protocol_manual
	spiro
	spiro_example
	spiro_import
	spiro_max
	spiro_plot
	spiro_raw
	spiro_smooth
	spiro_summary
	Index

