--- title: "training_synthetic_data" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{training_synthetic_data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(spect) ``` # Generating unit test data It can be useful to create a data set with a known distribution for testing novel modeling approaches. In this case, the sample data set generated is used for unit testing the spect package. ```{r} rng_seed <- 42 set.seed(rng_seed) syn_data <- create_synthetic_data(sample_size=2500, censor_percentage = 0.1, perturbation_shift = 6) source_data <- select(syn_data, -c(baseline_time_to_cancel, perturbed_baseline)) predict_data <- source_data[1:10,] modeling_data <- source_data[11:nrow(source_data),] ``` Training the model then becomes a straightforward call to spect_train. ```{r} event_indicator_var <- "cancel_event_detected" survival_time_var <- "total_months" obs_window <- 48 alg="glm" result <- spect_train(model_algorithm=alg, modeling_data=modeling_data, event_indicator_var=event_indicator_var, survival_time_var=survival_time_var, obs_window=obs_window, use_parallel=FALSE) ```