Package 'skewt'

October 14, 2022
Version 1.0
Date 2021-12-10
Title The Skewed Student-t Distribution
Description Density, distribution function, quantile function and random generation for the skewed t distribution of Fernandez and Steel.
License GPL
NeedsCompilation no
Author Robert King [aut, cre] (https://orcid.org/0000-0001-7495-6599), Emily Anderson [aut]
Maintainer Robert King Robert.King.newcastle@gmail.com
Repository CRAN
Date/Publication 2021-12-10 12:00:02 UTC

R topics documented:

\qquad
SkTDist 1

Index 3

SkTDist The Skewed Student t Distribution

Description

Density, distribution function, quantile function and random generation for the skewed distribution, as introduced by Fernandez and Steel, with df degrees of freedom.

Usage

dskt(x, df, gamma = 1)
pskt(x, df, gamma = 1)
qskt(p, df, gamma)
rskt(n, df, gamma)

Arguments

x
p
n
df degrees of freedom (>0, maybe non-integer).
gamma
vector of quantiles.
vector of probabilities. required.
number of observations. If length $(n)>1$, the length is taken to be the number

Details

The Skewed t distribution with $\mathrm{df}=\nu$ degrees of freedom has the following density, where $f(x)$ is the density of the t distribution, with $=\nu$ degrees of freedom :

$$
f(x)=\frac{2}{\gamma+\frac{1}{\gamma}} f(\gamma x) \quad \text { for } \quad x<0
$$

and

$$
f(x)=\frac{2}{\gamma+\frac{1}{\gamma}} f\left(\frac{x}{\gamma}\right) \quad \text { for } \quad x \geq 0
$$

Value
dskt gives the density, pskt gives the distribution function, qskt gives the quantile function, and rskt generates random deviates.

References

Fernandez, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness, J. Am. Statist. Assoc. 93, 359-371.

Rohr, P. and Hoeschele, I. (2002). Bayesian QTL mapping using skewed Student- t distributions, Genet. Sel. Evol. 34, 1-21.

See Also

df for the F distribution.

Examples

```
dskt(0.5,2)
dskt(0.01,2,2)
pskt(1.25,2,2)
pskt(c(0.5,1.25),3)
qskt(c(0,0.025,0.25,0.5,0.75,0.975,1),2,2)
rskt(100,2,2)
plot(function(x)dskt(x, 2, 2), -3,3,n=301)
```


Index

```
* distribution
    SkTDist, 1
df,2
dskt(SkTDist),1
pskt(SkTDist),1
qskt(SkTDist), 1
rskt(SkTDist),1
SkTDist,1
```

