Argument | Description |
---|---|
object |
A model fitted by lavaan . |
level |
Confidence level for the confidence intervals. For example,
.95 gives 95% confidence intervals. |
standardized |
Whether to return standardized estimates. Same as in
lavaan::parameterEstimates() . You can use
"std.all" , "std.lv" , etc. For detailed
standardized results with CIs, use
standardizedSolution_boot() instead. |
boot_org_ratio |
Whether to calculate how wide the bootstrap confidence interval is compared to the original confidence interval (from delta method). Useful to compare the two methods. |
boot_ci_type |
Method for forming bootstrap confidence intervals.
"perc" gives percentile intervals; "bc" and
"bca.simple" give bias-corrected intervals. |
save_boot_est |
Whether to save the bootstrap estimates in the result. Saved in
attributes boot_est_ustd (free parameters) and
boot_def (user-defined parameters) if
TRUE . |
boot_pvalue |
Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. |
boot_pvalue_min_size |
Minimum number of valid bootstrap samples needed to compute
asymmetric p-values. If fewer samples are available,
p-values will not be computed and will be shown as
NA . |
... |
Additional arguments passed to
lavaan::parameterEstimates() . |
# Ensure bootstrap estimates are stored
fit <- sem(mod, data = dat, fixed.x = FALSE)
fit <- store_boot(fit)
est_boot <- parameterEstimates_boot(fit)
print(est_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 1000
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> P-Value: Asymmetric
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Standard
#> Information: Expected
#> Information saturated (h1) model: Structured
#>
#> Regressions:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> m ~
#> x (a) 0.089 0.103 0.386 -0.113 0.291 0.108 0.446 -0.121 0.287
#> y ~
#> m (b) 0.192 0.034 0.000 0.125 0.260 0.037 0.000 0.121 0.265
#> x (cp) -0.018 0.112 0.871 -0.238 0.202 0.112 0.868 -0.240 0.214
#>
#> Variances:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> .m 0.898 0.040 0.000 0.819 0.977 0.041 0.000 0.820 0.983
#> .y 1.065 0.048 0.000 0.972 1.159 0.045 0.000 0.973 1.151
#> x 0.085 0.004 0.000 0.077 0.092 0.002 0.000 0.080 0.089
#>
#> Defined Parameters:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> ab (ab) 0.017 0.020 0.392 -0.022 0.056 0.021 0.446 -0.025 0.059
#> total (total) -0.001 0.114 0.993 -0.224 0.222 0.115 0.994 -0.229 0.225
#>
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.
# Change confidence level to 99%
est_boot <- parameterEstimates_boot(fit, level = 0.99)
# Use bias-corrected (BC) bootstrap confidence intervals
est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc")
# Turn off asymmetric bootstrap p-values
est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE)
# Do not save bootstrap estimates (for memory saving)
est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE)
# Compute and display bootstrap-to-original CI ratio
est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE)
# Combine options: BC CI, 99% level, no p-values
est_boot <- parameterEstimates_boot(fit,
level = 0.99,
boot_ci_type = "bc",
boot_pvalue = FALSE)
# Print with more decimal places (e.g., 5 digits)
print(est_boot, nd = 5)
# Print in lavaan-style text format (similar to summary())
print(est_boot, output = "text")
# Print as a clean data frame table
print(est_boot, output = "table")
# Drop specific columns (e.g., "Z") in lavaan.printer format
print(est_boot, drop_cols = "Z")
# Combine options: 5 decimal digits, text format
print(est_boot, nd = 5, output = "text")