Implementation of prediction and inference procedures for Synthetic Control methods using least square, lasso, ridge, or simplex-type constraints. Uncertainty is quantified with prediction intervals as developed in Cattaneo, Feng, and Titiunik (2021) <https://nppackages.github.io/references/Cattaneo-Feng-Titiunik_2021_JASA.pdf> for a single treated unit and in Cattaneo, Feng, Palomba, and Titiunik (2023) <doi:10.48550/arXiv.2210.05026> for multiple treated units and staggered adoption. More details about the software implementation can be found in Cattaneo, Feng, Palomba, and Titiunik (2024) <doi:10.48550/arXiv.2202.05984>.
Version: | 2.2.6 |
Depends: | R (≥ 4.1.0) |
Imports: | abind (≥ 1.4.5), CVXR (≥ 1.0-10), doSNOW (≥ 1.0.19), dplyr (≥ 1.0.7), ECOSolveR (≥ 0.5.4), fastDummies (≥ 1.6.3), foreach (≥ 1.5.1), ggplot2 (≥ 3.3.3), magrittr (≥ 2.0.1), MASS (≥ 7.3), Matrix (≥ 1.3.3), methods (≥ 4.1.0), parallel (≥ 4.1.0), purrr (≥ 0.3.4), Qtools (≥ 1.5.6), reshape2 (≥ 1.4.4), rlang (≥ 0.4.11), stats (≥ 4.1.0), stringr (≥ 1.4.0), tibble (≥ 3.1.2), tidyr (≥ 1.1.3), utils (≥ 4.1.1) |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2024-11-11 |
DOI: | 10.32614/CRAN.package.scpi |
Author: | Matias Cattaneo [aut], Yingjie Feng [aut], Filippo Palomba [aut, cre], Rocio Titiunik [aut] |
Maintainer: | Filippo Palomba <fpalomba at princeton.edu> |
License: | GPL-2 |
URL: | https://nppackages.github.io/scpi/ |
NeedsCompilation: | no |
In views: | CausalInference |
CRAN checks: | scpi results |
Reference manual: | scpi.pdf |
Package source: | scpi_2.2.6.tar.gz |
Windows binaries: | r-devel: scpi_2.2.6.zip, r-release: scpi_2.2.6.zip, r-oldrel: scpi_2.2.6.zip |
macOS binaries: | r-release (arm64): scpi_2.2.6.tgz, r-oldrel (arm64): scpi_2.2.6.tgz, r-release (x86_64): scpi_2.2.6.tgz, r-oldrel (x86_64): scpi_2.2.6.tgz |
Old sources: | scpi archive |
Please use the canonical form https://CRAN.R-project.org/package=scpi to link to this page.