Package 'sad'

October 14, 2022
Title Verify the Scale, Anisotropy and Direction of Weather Forecasts
Version 0.1.3
Description Implementation of the wavelet-based spatial verifica-
tion method of Buschow and Friederichs "'SAD: Verifying the Scale, Anisotropy and Direc-
tion of precipitation forecasts" (2020, submitted to QJRMS). Forecasts and Observa-
tions are transformed by a decimated or redundant dual-tree complex wavelet transform to analyze the spatial scale, degree of anisotropy and preferred direction in each field. These structural attributes are compared by a series of scores. An experimental algorithm for the correction of these errors is included as well.
License MIT + file LICENSE
Imports emdist
Depends dualtrees
Encoding UTF-8
LazyData false
RoxygenNote 6.1.1
NeedsCompilation no
Author Sebastian Buschow [aut, cre] (https://orcid.org/0000-0003-4750-361X)
Maintainer Sebastian Buschow s6sebusc@uni-bonn.de
Repository CRAN
Date/Publication 2020-11-06 16:30:02 UTC

R topics documented:

getpareto 2
hemd 2
prepare_sad 3
raincols 4
rrain 4
sadcorrect 5
sadforecast 6
sadverif 7
semd 8

Index

```
getpareto Find the pareto set
```


Description

Determine the set of pareto optimal forecasts in a matrix of scores

Usage

getpareto(scores)

Arguments

scores a matrix of negatively oriented scores where the rows correspond to different forecasts and the columns denote different scores.

Details

The Pareto set contains all those forecasts for which no other forecast is better in every respect. In this function, we assume that all scores are negatively oriented, "better" therefore means lower values.

Value

a vector of indices indicating all members of the pareto set.

Note

This function becomes very memory hungry if you have more than 1000 forecasts, be careful.

```
hemd histogram emd
```


Description

Earth Mover's Distance between two histograms, given as vectors

Usage

hemd(h1, h2, mids = NULL)

Arguments

h1, h2 vectors of non-negtaive numbers representing two histograms
mids the bin mids corresponding to the histograms. Can also be given via the names of h1.

Value

the value of the EMD

```
prepare_sad prepare a sad forecast for verification
```


Description

remove small values, apply log-transform, smooth borders, handle boundary conditions

Usage

prepare_sad(x, xmin $=0.1, \log =$ TRUE, $r s m=0, N x=$ NULL, Ny = NULL, boundaries = "pad")

Arguments

x
xmin values smaller than xmin are set to zero
log logical, do you want to log-transfrom the data? (recommended for precipitation)
rsm number of pixels which are linearly smoothed at the edge
$\mathrm{Nx} \quad$ size to which the data is extended in x -direction
Ny size to which the data is extended in y-direction
boundaries how to handle the boundary conditions, either "pad", "mirror" or "periodic"

Details

the positions within the extended field where the original field resides are output as attributes "px", "py" of the result. The other input parameters are saved as attributes of the result as well.

Value

an object of class sadforecast which has been prepared in the desired way.

Examples

```
data( rrain )
ra <- list( rrain[2,4,,], rrain[3,9,,] )
ra <- prepare_sad( ra, rsm=0, Nx=256, boundaries="mirror", log=FALSE )
plot(ra)
```

```
    raincols rain color scale
```


Description

eight shades of blue used in plot.sadforecast

Usage

raincols

Format

An object of class character of length 8.

rrain Random Rain

Description

Randomly simulated synthetic rain fields with Matern covariances

Usage

data(rrain)

Format

A $4 \times 10 \times 128 \times 128$ matrix

Details

These fields were used in Buschow et al. (2019) doi:10.5194/gmd-12-3401-2019. The first array corresponds to the four model configurations from that paper (different roughness nu and scale sc), the second dimension contains ten realizations for each model.

Source

simulated using the 'RandomFields' package, code available at <10.5281/zenodo.3257511>

Examples

```
data(rrain)
```

```
sadcorrect correct structure errors
```


Description

use the inverse 'dtcwt' to correct errors in scale, anisotropy and direction

Usage

sadcorrect(x, xmin = 0.1, log = TRUE, rsm = 0, Nx = NULL, Ny = NULL, J = NULL, boundaries = "pad", direction = TRUE)

Arguments

x
xmin
log logical, do you want to log-transfrom the data? (recommended for precipitation)
rsm number of pixels which are linearly smoothed at the edge
$\mathrm{Nx} \quad$ size to which the data is extended in x -direction, has to be a whole power of 2
Ny size to which the data is extended in y-direction, has to be a whole power of 2
J largest scale considered
boundaries how to handle the boundary conditions, either "pad", "mirror" or "periodic"
direction if TRUE, scale and direction are corrected, otherwise only scale

Details

The algorithm performs the following steps:

1. remove values below xmin
2. if log=TRUE log-transform all fields
3. set all fields to zero mean, unit variance
4. apply dtcwt to all fields
5. loop over forecasts and scales. If direction=TRUE loop over the six directions. Multiply forecast energy at each location by the ratio of total observed energy to total forecast energy at that scale (and possibly direction)
6. apply idtcwt to all forecasts
7. reset means and variance of the forecasts to their original values
8. if log=TRUE invert the log-transform
9. return the list of corrected fields

Value

an object of class sadforecast

Examples

```
data(rrain)
ra <- as.sadforecast( list( rrain[2,1,,], rrain[3,1,,], rrain[3,2,,], rrain[3,3,,] ) )
ra_c <- sadcorrect( ra, rsm=10 )
plot(ra_c)
```

 sadforecast class for a list of forecasts

Description

check that a list of forecasts fulfills all requirements to be verified by our method

Usage

as.sadforecast(x)
\#\# S3 method for class 'sadforecast'
plot (x, mfrow $=$ NULL, col $=$ NULL, ...)

Arguments

$x \quad a \operatorname{list}$ of 2 or more 2D matrices with equal sizes and no missing or inifinite values
mfrow vector with the number of rows and columns you would like in the plot
col color scale for the plot
... further arguments passed to image

Details

as.sadforecast does nothing except check that everything is as it should be, add the attributes that can be changed by prepare_sad and provide a method for quick plots of the data.

Value

an object of class sadforecast

Examples

```
data( rrain )
ra <- list( rrain[1,1,,], rrain[4,5,,], rrain[2,7,,] )
ra <- as.sadforecast(ra)
plot(ra)
```


Description

verify the scale, anisotropy and direction of a number of forecasts

Usage

```
    sadverif(x, dec = TRUE, xmin = 0.1, log = TRUE, a = 1, nbr = 33,
        rsm = 0, Nx = NULL, Ny = NULL, J = NULL, boundaries = "pad",
        return_specs = FALSE)
    ## S3 method for class 'sadverif'
    plot(x, ...)
    ## S3 method for class 'sadverif'
    summary(object, ...)
```


Arguments

x
dec
xmin
log logical, do you want to log-transfrom the data? (recommended for precipitation)
a
nbr number of breaks for the scale histograms, has no effect if dec=TRUE
rsm number of pixels which are linearly smoothed at the edge
$\mathrm{Nx} \quad$ size to which the data is extended in x -direction
Ny size to which the data is extended in y-direction
J largest scale considered
boundaries how to handle the boundary conditions, either "pad", "mirror" or "periodic"
return_specs if TRUE, the spatial mean spectra are returned as well
... further arguments, currently ignored.
object object of class sadverif

Details

each element of x is transformed via dtcwt from the 'dualtrees' package. Scores and centres based on the mean spectra are calculated. If dec=FALSE, scale histograms and the corresponding score hemd are calcualted as well.

Value

an object of class sadverif, containing the following elements
settings a dataframe containing the parameters that were originally passed to dtverif
centres a matrix cotaining the anisotropy rho, angle phi and central scale z derived from the mean spectra. Rain area and sum are included as well.
detscores a matrix containing the differences in centre components, the direction/anisotropy score dxy , the emd between direction-averaged spectra (semd) and the emd between the directional spectra (semdd). If dec=FALSE, the emd between the scale histograms, hemd, is included as well.
time the time the calculation took in seconds
if there is more than one forecast, the ensemble scores SpEn and (if available), hemd are computed as well, treating all forecasts as members of the ensemble to be verified.

References

Selesnick, I.W., R.G. Baraniuk, and N.C. Kingsbury (2005) doi:10.1109/MSP.2005.1550194 Buschow et al. (2019) doi:10.5194/gmd-12-3401-2019 Buschow and Friederichs (2020) doi:10.5194/ascmo-6-13-2020

Examples

```
oldpar <- par(no.readonly=TRUE)
on.exit(par(oldpar))
data(rrain)
ra <- as.sadforecast( list( rrain[1,1,,], rrain[1,2,,], rrain[2,1,,], rrain[3,1,,] ) )
plot(ra)
verif <- sadverif( ra, log=FALSE, xmin=0 )
summary(verif)
par( mfrow=c(2,2) )
plot( verif)
```

semd
spectral emd

Description

earth mover's distance between dual-tree wavelet spectra

Usage

semd(dt1, dt2, a = 1, dir = TRUE)

Arguments

$d t 1, d t 2$	forecast and observed spectrum
a	ratio between scale- and directional component
dir	whether or not to include direction information

Value

a single value, the emd. If dir=FALSE, the value is signed, indicating the direction of the scale error.

Index

```
* datasets
    raincols,4
    rrain,4
as.sadforecast (sadforecast), 6
getpareto, 2
hemd, 2
plot.sadforecast(sadforecast),6
plot.sadverif(sadverif),7
prepare_sad, 3
raincols,4
rrain,4
sadcorrect, 5
sadforecast,6
sadverif,7
semd, }
summary.sadverif(sadverif), 7
```

