## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, fig.alt = "Default descriptive text", comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # # Install from CRAN # install.packages("rbrsa") # # # Or install the development version from GitHub # # install.packages("pak") # pak.::pkg_install("obakis/rbrsa") ## ----------------------------------------------------------------------------- # Load the package library(rbrsa) ## ----------------------------------------------------------------------------- # List available tables in the Monthly Bulletin bulletin_tables <- list_tables("bddk", lang="en") head(bulletin_tables) # List available banking groups for the Monthly Bulletin bulletin_groups <- list_groups("bddk", lang="en") head(bulletin_groups) ## ----------------------------------------------------------------------------- # List available tables in Finturk finturk_tables <- list_tables("finturk", lang="en") finturk_tables # List available banking groups for Finturk finturk_groups <- list_groups("finturk", lang="en") finturk_groups # List of cities for Finturk cities <- list_cities() head(cities) ## ----------------------------------------------------------------------------- my_dat <- fetch_bddk( start_year = 2020, start_month = 1, end_year = 2020, end_month = 12, table_no = 4, grup_kod = 10001, verbose=TRUE ) # Examine the structure of the returned data cat("Dimensions:", dim(my_dat), "\n") colnames(my_dat) head(my_dat) ## To save the results: # temp_file <- tempfile() # filename should be without extension # save_data(my_dat, temp_file, format = "csv") ## ----message=FALSE, warning=FALSE--------------------------------------------- library(dplyr) library(ggplot2) colnames(my_dat) cols = c("Consumer Loans - Housing","Consumer Loans - Personal Finance") p = my_dat |> select(Ad,TRY,period) |> filter(Ad %in% cols) |> mutate(date=as.Date(paste0(period, "-01"))) |> ggplot(aes(x=date, y=TRY, color=Ad, group=Ad, shape=Ad)) + geom_line(linewidth = 1) + geom_point(size = 2.4, alpha = 0.7) + scale_x_date( date_breaks = "2 months", # Show tick every 3 months date_labels = "%b %Y", # Format as "Jan 2020" expand = c(0.01, 0) # Reduce padding ) + scale_y_continuous( labels = scales::comma # Format numbers with commas ) + labs( title = "Consumer Loans Trends, Jan 2020-Dec 2020 (TRY)", subtitle = "Monthly data for Housing vs Personal Finance loans", x = "", y = "" ) + theme_minimal() + theme( legend.position = "bottom", # This moves the legend to the bottom axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(face = "bold", size = 14), ) p ## ----------------------------------------------------------------------------- my_dat2 <- fetch_finturk( start_year = 2023, start_month = 3, end_year = 2024, end_month = 12, table_no = 2, grup_kod = 10001, il=0, verbose=FALSE ) # Examine the structure of the returned data cat("Dimensions:", dim(my_dat2), "\n") colnames(my_dat2) head(my_dat2) ## To save the results: # temp_file <- tempfile() # filename should be without extension # save_data(my_dat, temp_file, format = "csv") ## ----------------------------------------------------------------------------- sel_cities =c("ADANA","MALATYA","MUGLA","KAYSERI") cols = c("il_adi", "period","Toplam Mevduat") lookup <- c(city="il_adi", deposit="Toplam Mevduat") p2 = my_dat2[,cols] |> rename(all_of(lookup)) |> mutate(date=as.Date(paste0(period, "-01"))) |> mutate(.by=period, sh = 100*deposit/sum(deposit, na.rm=TRUE)) |> filter( city %in% sel_cities) |> ggplot(aes(x=date, y=sh, color=city, group=city, shape=city)) + geom_line(linewidth = 1) + geom_point(size = 2.4, alpha = 0.7) + scale_x_date( date_breaks = "3 months", # Show tick every 3 months date_labels = "%b %Y", # Format as "Jan 2020" expand = c(0.01, 0) # Reduce padding ) + labs( title = "Share of Selected Provinces in Deposits, 2020-2023 (TRY)", x = "", y = "" ) + theme_minimal() + theme( legend.position = "bottom", # This moves the legend to the bottom axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(face = "bold", size = 14), ) p2 ## ----eval=FALSE--------------------------------------------------------------- # # Save to different formats. file name must be without extension # save_data(my_dat, "filename_you_prefer", format = "csv") # save_data(my_dat, "filename_you_prefer", format = "rds") # save_data(my_dat, "filename_you_prefer", format = "xlsx") # # # Using tempfile() for examples (as in README) # temp_file <- tempfile() # save_data(my_dat, temp_file, format = "csv") # cat("Data saved to:", temp_file, "\n") ## ----include=FALSE------------------------------------------------------------ # Optional: Ensure all packages needed for building are available # This chunk won't appear in the final vignette knitr::opts_chunk$set( echo = TRUE, message = FALSE, warning = FALSE, fig.width = 7, fig.height = 5, fig.align = "center" )