Package 'rarestR'

March 20, 2024
Version 1.0.0
Date 2024-03-20
Title Rarefaction-Based Species Richness Estimator
Maintainer Peng Zhao pengzhao20@outlook.com
Depends R (>= 3.5.0)
Imports Rdpack
RdMacros Rdpack

Suggests

Description Calculate rarefaction-based alpha- and beta-diversity. Offer parametric extrapolation to estimate the total expected species in a single community and the total expected shared species between two communities. Visualize the curve-fitting for these estimators.

License MIT + file LICENSE

URL https://github.com/pzhaonet/rarestR
BugReports https://github.com/pzhaonet/rarestR/issues
RoxygenNote 7.2.3
NeedsCompilation no
LazyData true
Author Peng Zhao [aut, cre] (https://orcid.org/0000-0001-5267-9797), Yi Zou [aut] (https://orcid.org/0000-0002-7082-9258)
Repository CRAN
Date/Publication 2024-03-20 06:40:02 UTC

R topics documented:

es 2
ess 3
plot.rarestr 4
plot_tes 4
plot_tess 5
print.rarestr 5
share 6
tes 6
tess 7
Index 8

Description

Calculate the Expected Species

Usage

es(x, m, method = c("a", "b"), MARGIN = 1)

Arguments

$x \quad$ a data vector representing number of individuals for each species
$\mathrm{m} \quad$ the sample size parameter that represents the number of individuals randomly drawn from the sample, which by default is set to $m=1$, but can be changed according to the users' requirements. For ESa, m can not be larger than the sample size
method the calculation approach of Expected Species used, with two options available as "a" and "b" to calculate ESa and ESb, with the default set as "a"
MARGIN a vector giving the subscripts which the function will be applied over, see 'apply'.

Value

a value of Expected Species

References

Zou Y, Zhao P, Axmacher JC (2023). "Estimating total species richness: Fitting rarefaction by asymptotic approximation." Ecosphere, 14(1), e4363. doi:10.1002/ecs2.4363.

Examples

```
data(share, package = 'rarestR')
rowSums(share) #The sum size of each sample is 100, 150 and 200
es(share, m = 100)
es(share, method = "b", m = 100)
# When the m is larger than the total sample size, "NA" will be filled:
es(share, m = 150)
``` pected Species Shared (ESS)-measures, using abundance data for the species contained in each samples

\section*{Description}

Compute dissimilarity estimates between two samples based on Expected Species Shared (ESS)measures, using abundance data for the species contained in each samples

\section*{Usage}
ess(x, m = 1, index = "CNESSa")

\section*{Arguments}
\(x \quad\) a community data matrix (sample \(x\) species); sample name is the row name of the matrix
\(\mathrm{m} \quad\) the sample size parameter that represents the number of individuals randomly drawn from each sample, which by default is set to \(\mathrm{m}=1\), but can be changed according to the users' requirements. Rows with a total sample size \(<\mathrm{m}\) will be excluded automatically from the analysis.
index the distance measure used in the calculation, as one of the four options "CNESSa", "CNESS","NESS" and "ESS", with the default set as "CNESSa"

\section*{Value}
a pair-wised matrix

\section*{References}

Zou Y, Axmacher JC (2020). "The Chord-Normalized Expected Species Shared (CNESS)-distance represents a superior measure of species turnover patterns." Methods in Ecology and Evolution, 11(2), 273-280. doi:10.1111/2041210X. 13333.

\section*{Examples}
```

data(share, package = 'rarestR')
ess(share)
ess(share, m = 100)
ess(share, m = 100, index = "ESS")

```

\section*{Description}

Plot the "rarestr" class

\section*{Usage}
\#\# S3 method for class 'rarestr'
plot(x, ...)

\section*{Arguments}
x
a "rarestr" object
.. other arguments passed to plot()

\section*{Value}

Plot the "rarestr" class

\section*{Examples}
```

data(share, package = 'rarestR')
Output_tes <- tes(share[1,])
Output_tes
plot(Output_tes)

```
plot_tes

Plot fitted curve for TES

\section*{Description}

Plot fitted curve for TES

\section*{Usage}
plot_tes(TES_output, ...)

\section*{Arguments}
\begin{tabular}{ll}
TES_output & the output from tes() \\
\(\ldots\) & other arguments passed to \(\operatorname{plot}()\)
\end{tabular}

\section*{Value}
a plot
```

    plot_tess Plot fitted curve for TESS
    ```

\section*{Description}

Plot fitted curve for TESS

\section*{Usage}
plot_tess(TESS_output, ...)

\section*{Arguments}
\begin{tabular}{ll}
TESS_output & the output from tess() \\
\(\ldots\) & other arguments passed to plot()
\end{tabular}

\section*{Value}
a plot
```

    print.rarestr
    Print the "rarestr" class
    ```

\section*{Description}

This function prints the contents of a rarestr object.

\section*{Usage}
\#\# S3 method for class 'rarestr'
print(x, ...)

\section*{Arguments}
x a "rarestr" object\#'
... Other arguments passed to print().

\section*{Value}

Print the "rarestr" class

\section*{Examples}
```

data(share, package = 'rarestR')
Output_tes <- tes(share[1,])
Output_tes

```
share \(\quad\) Dataset for rarest \(R\).

\section*{Description}

This is a dataset comprises three samples randomly drawn from three simulated communities. Every community consists of 100 species with approximately 100,000 individuals following a log-normal distribution (mean \(=6.5, \mathrm{SD}=1\)). Setting the first community as control group, the second and third community shared a total of 25 and 50 species with the control. A more detailed description of the control and scenario groups can be found in Zou and Axmacher (2021). The share dataset represents a random subsample of 100,150 and 200 individuals from three three communities, containing 58, 57 and 74 species, respectively.

\section*{Usage}
share

\section*{Format}

An object of class matrix (inherits from array) with 3 rows and 142 columns.

\section*{References}

Zou, Y., \& Axmacher, J. C. (2021). Estimating the number of species shared by incompletely sampled communities. Ecography, 44(7), 1098-1108.
\begin{tabular}{ll}
\hline tes & \begin{tabular}{l}
Calculation of Total Expected Species base on ESa, ESb and their av- \\
erage value
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Calculation of Total Expected Species base on ESa, ESb and their average value

\section*{Usage}
tes \((x\), knots \(=40)\)

\section*{Arguments}
\(x \quad\) a data vector representing number of individuals for each species
knots specifies the number of separate sample sizes of increasing value used for the calculation of ES between 1 and the endpoint, which by default is set to knots=40

\section*{Value}
a list, which contains a table of the summary of the estimated values and their standard deviations based on TESa, TESb, and TESab, and the model used in the estimation of TES, either 'logistic' or 'Weibull'

\section*{References}

Zou Y, Zhao P, Axmacher JC (2023). "Estimating total species richness: Fitting rarefaction by asymptotic approximation." Ecosphere, 14(1), e4363. doi:10.1002/ecs2.4363.

\section*{Examples}
```

data(share, package = 'rarestR')
Output_tes <- tes(share[1,])
Output_tes

```
tess

Calculate the Total number of Expected Shared Species between two samples.

\section*{Description}

Calculate the Total number of Expected Shared Species between two samples.

\section*{Usage}
tess \((x\), knots \(=40)\)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { a data matrix for two samples representing two communities (plot x species) } \\ \text { knots } & \begin{array}{l}\text { specifies the number of separate sample sizes of increasing value used for the } \\ \text { calculation of ESS between } 1 \text { and the endpoint, which by default is set to knots=40 }\end{array}\end{array}\)

\section*{Value}
estimated values and their standard deviations of TESS, and the model used in the estimation of TES, either 'logistic' or 'Weibull'

\section*{References}

Zou Y, Axmacher JC (2021). "Estimating the number of species shared by incompletely sampled communities." Ecography, 44(7), 1098-1108. doi:10.1111/ecog.05625.

\section*{Examples}
```

data(share, package = 'rarestR')
Output_tess <- tess(share[1:2,])
Output_tess

```

\section*{Index}
* datasets
share, 6
apply, 2
es, 2
ess, 3
plot.rarestr, 4
plot_tes, 4
plot_tess, 5
print.rarestr, 5
share, 6
tes, 6
tess, 7```

