## ----setup-------------------------------------------------------------------- library(rBiasCorrection) ## ----------------------------------------------------------------------------- plotdir <- paste0(tempdir(), "/png/") csvdir <- paste0(tempdir(), "/csv/") dir.create(plotdir) dir.create(csvdir) samplelocusname <- "CDH1" seed <- 1234 ## ----------------------------------------------------------------------------- # First of all, the example-data have to be saved as CSV-files as # `rBiasCorrection` expects CSV-files as input data. cols <- c("sample_id", "CpG#1") temp_file <- rBiasCorrection::example.data_experimental$dat[ , cols, with = FALSE ] data.table::fwrite(temp_file, paste0(tempdir(), "/experimental_data.csv")) cols <- c("true_methylation", "CpG#1") temp_file <- rBiasCorrection::example.data_calibration$dat[ , cols, with = FALSE ] data.table::fwrite(temp_file, paste0(tempdir(), "/calibration_data.csv")) ## ----------------------------------------------------------------------------- experimental <- paste0(tempdir(), "/experimental_data.csv") calibration <- paste0(tempdir(), "/calibration_data.csv") ## ----results='hide', message=FALSE, warning=FALSE, error=FALSE---------------- rBiasCorrection::biascorrection( experimental = experimental, calibration = calibration, samplelocusname = samplelocusname, plotdir = plotdir, csvdir = csvdir, seed = seed, parallel = FALSE ) ## ----------------------------------------------------------------------------- filename <- list.files(csvdir)[ grepl("regression_stats_[[:digit:]]", list.files(csvdir)) ] reg_stats <- data.table::fread(paste0(csvdir, filename)) knitr::kable(reg_stats[, 1:9]) knitr::kable(reg_stats[, 11:16])