Package 'qfratio'

February 9, 2024

Type Package

Title Moments and Distributions of Ratios of Quadratic Forms Using Recursion

Version 1.1.1
Date 2024-02-08
Description Evaluates moments of ratios (and products) of quadratic forms in normal variables, specifically using recursive algorithms developed by Bao and Kan (2013) doi:10.1016/j.jmva.2013.03.002 and Hillier et al. (2014) doi:10.1017/S0266466613000364. Also provides distribution, quantile, and probability density functions of simple ratios of quadratic forms in normal variables with several algorithms. Originally developed as a supplement to Watanabe (2023) doi:10.1007/s00285-023-01930-8 for evaluating average evolvability measures in evolutionary quantitative genetics, but can be used for a broader class of statistics. Generating functions for these moments are also closely related to the top-order zonal and invariant polynomials of matrix arguments.
License GPL (>= 3)
URL https://github.com/watanabe-j/qfratio
BugReports https://github.com/watanabe-j/qfratio/issues
Imports Rcpp, MASS, stats
LinkingTo Rcpp, RcppEigen
Suggests mvtnorm, CompQuadForm, graphics, testhhat (>= 3.0.0), knitr, rmarkdown
Encoding UTF-8
RoxygenNote 7.2.3
Config/testthat/edition 3
VignetteBuilder knitr, rmarkdown
NeedsCompilation yes
Author Junya Watanabe [aut, cre, cph]
(https://orcid.org/0000-0002-9810-5286),

Patrick Alken [cph] (Author of bundled C codes from GSL),
Brian Gough [cph] (Author of bundled C codes from GSL),
Pavel Holoborodko [cph] (Author of bundled C codes from GSL),
Gerard Jungman [cph] (Author of bundled C codes from GSL),
Reid Priedhorsky [cph] (Author of bundled C codes from GSL),
Free Software Foundation, Inc. [cph] (Copyright holder of some bundled scripts)
Maintainer Junya Watanabe <Junya. Watanabe@uab.cat>
Repository CRAN
Date/Publication 2024-02-09 00:30:11 UTC

R topics documented:

qfratio-package2
a1_pk 6
d1_i 7
d2_ij 9
d3_ijk 12
dqfr 15
dtil2_pq 23
hgs 24
hyperg_1F1_vec_b 25
iseq 26
is_diagonal 26
KiK 27
new_qfrm 27
print.qfrm 29
p_A1B1_Ed 31
qfmrm 43
qfpm 48
qfrm 51
range_qfr 57
rqfr 58
sum_counterdiag 60
S_fromUL 61
tr 61
Index 62
qfratio-package

Description

This package is for evaluating moments of ratios (and products) of quadratic forms in normal variables, specifically using recursive algorithms developed by Bao et al. (2013) and Hillier et al. (2014) (see also Smith, 1989, 1993; Hillier et al., 2009). It also provides some functions to evaluate distribution, quantile, and probability density functions of simple ratios of quadratic forms in normal variables using several algorithms. It was originally developed as a supplement to Watanabe (2023) for evaluating average evolvability measures in evolutionary quantitative genetics, but can be used for a broader class of statistics.

Details

The primary front-end functions of this package are q frm() and qfmrm() for evaluating moments of ratios of quadratic forms. These pass arguments to one of the several "internal" (though exported) functions which do actual calculations, depending on the argument matrices and exponents. In addition, there are a few functions to calculate moments of products of quadratic forms (integer exponents only; qfpm).

There are many internal functions for calculating coefficients in power-series expansion of generating functions for these moments (d1_i, d2_ij, d3_ijk, dtil2_pq) using "super-short" recursions (Bao and Kan, 2013; Hillier et al. 2014). Some of these coefficients are related to the top-order zonal and invariant polynomials of matrix arguments.
The package also has some functions to evaluate distribution, quantile, and density functions of simple ratios of quadratic forms: pqfr() , $q q f r()$, and dqfr().

See package vignettes (vignette("qfratio") and vignette("qfratio_distr")) for more details.

The DESCRIPTION file:

Package:	qfratio
Type:	Package
Title:	Moments and Distributions of Ratios of Quadratic Forms Using Recursion
Version:	1.1 .1
Date:	$2024-02-08$
Authors@R:	c(person("Junya", "Watanabe", email = "Junya.Watanabe @uab.cat", role = c("aut", "cre", "cph"), co
Description:	Evaluates moments of ratios (and products) of quadratic forms in normal variables, specifically usin
License:	GPL (>=3)
URL:	https://github.com/watanabe-j/qfratio
BugReports:	https://github.com/watanabe-j/qfratio/issues
Imports:	Rcpp, MASS, stats
LinkingTo:	Rcpp, RcppEigen
Suggests:	mvtnorm, CompQuadForm, graphics, testthat (>= 3.0.0), knitr, rmarkdown
Encoding:	UTF-8
Roxygen:	list(markdown = TRUE)
RoxygenNote:	7.2 .3
Config/testthat/edition:	3
VignetteBuilder:	knitr, rmarkdown
Author:	Junya Watanabe [aut, cre, cph] (https://orcid.org/0000-0002-9810-5286), Patrick Alken [cph] (Au
Maintainer:	Junya Watanabe <Junya.Watanabe@ uab.cat>

Index of help topics:

```
KiK
S_fromUL
a1_pk
d1_i Coefficients in polynomial expansion of
    generating function-single matrix
d2_ij Coefficients in polynomial expansion of
    generating function-for ratios with two
    matrices
d3_ijk Coefficients in polynomial expansion of
    generating function-for ratios with three
    matrices
dqfr Probability distribution of ratio of quadratic
    forms
    Coefficients in polynomial expansion of
    generating function-for products
hgs Calculate hypergeometric series
is_diagonal Is this matrix diagonal?
iseq
new_qfrm
p_A1B1_Ed
print.qfrm
qfmrm
qfpm Moment of (product of) quadratic forms in
    normal variables
qfratio-package qfratio: Moments and Distributions of Ratios of
    Quadratic Forms
qfrm Moment of ratio of quadratic forms in normal
    variables
range_qfr Get range of ratio of quadratic forms
rqfr Monte Carlo sampling of ratio/product of
    quadratic forms
sum_counterdiag Summing up counter-diagonal elements
tr Matrix trace function
```


Author/Maintainer

Junya Watanabe Junya.Watanabe@uab.cat

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.
Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant polynomials with applications. Econometric Theory, 25, 211-242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30, 436-473. doi:10.1017/S0266466613000364.
Smith, M. D. (1989) On the expectation of a ratio of quadratic forms in normal variables. Journal of Multivariate Analysis, 31, 244-257. doi:10.1016/0047259X(89)900651.

Smith, M. D. (1993) Expectations of ratios of quadratic forms in normal variables: evaluating some top-order invariant polynomials. Australian Journal of Statistics, 35, 271-282. doi:10.1111/j.1467842X.1993.tb01335.x.

Watanabe, J. (2023) Exact expressions and numerical evaluation of average evolvability measures for characterizing and comparing G matrices. Journal of Mathematical Biology, 86, 95. doi:10.1007/ s00285023019308.

See Also

qfrm: Moment of simple ratio of quadratic forms
qfmrm : Moment of multiple ratio of quadratic forms
qfpm: Moment of product of quadratic forms
rqfr: Monte Carlo sampling of ratio/product of quadratic forms
dqfr: Probability distribution of simple ratio of quadratic forms

Examples

```
## Symmetric matrices
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
D <- diag((1:nv)^2 / nv)
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1
## Expectation of (x^T A x)^2 / ( }\mp@subsup{x}{}{\wedge}\top=x\mp@subsup{)}{}{\wedge}2\mathrm{ where x ~ N(0, I)
qfrm(A, p = 2)
## And a Monte Carlo mean of the same
mean(rqfr(1000, A = A, p = 2))
## Expectation of (x^\top A x )^1/2 / ( }\mp@subsup{x}{}{\wedge}\top x x)^1/2 where x ~ N(0, I)
(res1 <- qfrm(A, p = 1/2))
plot(res1)
## A Monte Carlo mean
mean(rqfr(1000, A = A, p = 1/2))
## (x^T A x)^2 / (x^T B x)^3 where x ~ N(mu, Sigma)
(res2 <- qfrm(A, B, p = 2, q = 3, mu = mu, Sigma = Sigma))
plot(res2)
## A Monte Carlo mean
mean(rqfr(1000, A = A, B = B, p = 2, q = 3, mu = mu, Sigma = Sigma))
## Expectation of (x^\top A x)^2 / (x^T B x) (x^\top x) where x ~ N(0, I)
```

```
(res3 <- qfmrm(A, B, p = 2, q = 1, r = 1))
plot(res3)
## A Monte Carlo mean
mean(rqfmr(1000, A = A, B = B, p = 2, q = 1, r=1))
## Expectation of (x^T A x)^2 where x ~ N(0, I)
qfm_Ap_int(A, 2)
## A Monte Carlo mean
mean(rqfp(1000, A = A, p = 2, q = 0, r = 0))
## Expectation of (x^T A x) (x^\top B x) (x^T D x) where x ~ N(mu, I)
qfpm_ABDpqr_int(A, B, D, 1, 1, 1, mu = mu)
## A Monte Carlo mean
mean(rqfp(1000, A = A, B = B, D = D, p = 1, q = 1, r = 1, mu = mu))
## Distribution and quantile functions,
## and density of ( }\mp@subsup{x}{}{\wedge}\top A x ) / ( ( ^^\top B x)
quantiles <- 0:nv + 0.5
(probs <- pqfr(quantiles, A, B))
qqfr(probs, A, B) # p = 1 yields maximum of ratio
dqfr(quantiles, A, B)
```

a1_pk Recursion for $a _\{p, k\}$

Description

a1_pk() is an internal function to calculate $a_{p, k}\left(a_{r, l}\right.$ in Hillier et al. 2014; eq. 24), which is used in the calculation of the moment of such a ratio of quadratic forms in normal variables where the denominator matrix is identity.

Usage

a1_pk(L, mu = rep.int(0, $n), m=10 L)$

Arguments

L	Eigenvalues of the argument matrix; vector of λ_{i}
mu	Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
m	Scalar to specify the desired order

Details

This function implements the super-short recursion described in Hillier et al. (2014 eqs. 31-32). Note that $w_{r, i}$ there should be understood as $w_{r, l, i}$ with the index l fixed for each $a_{r, l}$.

See Also

qfrm_ApIq_int(), in which this function is used (for noncentral cases only)

```
d1_i
```

Coefficients in polynomial expansion of generating function—single matrix

Description

These are internal functions to calculate the coefficients in polynomial expansion of generating functions for quadratic forms in multivariate normal variables.
$\mathrm{d} 1 _\mathrm{i}()$ is for standard multivariate normal variables, $\mathbf{x} \sim N_{n}\left(\mathbf{0}_{n}, \mathbf{I}_{n}\right)$.
dtil1_i_v() is for noncentral multivariate normal variables, $\mathbf{x} \sim N_{n}\left(\boldsymbol{\mu}, \mathbf{I}_{n}\right)$.
dtil1_i_m() is a wrapper for $\mathrm{dtil1} _\mathrm{i} _\mathrm{v}()$ and takes the argument matrix rather than its eigenvalues.

Usage

d1_i(L, m = 100L, thr_margin = 100)
dtil1_i_v(L, mu = rep.int(0, n), m = 100L, thr_margin = 100)
dtil1_i_m(A, mu = rep.int(0, n), m = 100L, thr_margin = 100)

Arguments

$L \quad$ Vector of eigenvalues of the argument matrix
m Integer-alike to specify the order of polynomials
thr_margin Optional argument to adjust the threshold for scaling (see "Details")
mu Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
A Argument matrix. Assumed to be symmetric in these functions.

Details

d1_i() calculates $d_{k}(\mathbf{A})$, and dtil1_i_v() and dtil1_i_m() calculate $\tilde{d}_{k}(\mathbf{A})$ in Hillier et al. $(2009,2014)$ and Bao and Kan (2013). The former is related to the top-order zonal polynomial $C_{[k]}(\mathbf{A})$ in the following way: $d_{k}(\mathbf{A})=\frac{1}{k!}\left(\frac{1}{2}\right)_{k} C_{[k]}(\mathbf{A})$, where $(x)_{k}=x(x+1) \ldots(x+k-1)$.
These functions calculate the coefficients based on the super-short recursion algorithm described in Hillier et al. (2014: 3.2, eqs. 28-30).

Scaling:

The coefficients described herein (and in d2_ij and d3_ijk) can become very large for higherorder terms, so there is a practical risk of numerical overflow when applied to large matrices or matrices with many large eigenvalues (note that the latter typically arises from those with many small eigenvalues for the front-end qfrm() functions). To avoid numerical overflow, these functions automatically scale coefficients (and temporary objects used to calculate them) by a large number (1e10 at present) when any value in the temporary objects exceeds a threshold, .Machine\$double.xmax / thr_margin / n, where n is the number of variables. This
default value empirically seems to work well in most conditions, but use a large thr_margin (e.g., 1e5) if you encounter numerical overflow. (The C++ functions use an equivalent expression, std: :numeric_limits<Scalar>: :max() / thr_margin / Scalar(n), with Scalar being double or long double.)
In these R functions, the scaling happens order-wise; i.e., it influences all the coefficients of the same order in multidimensional coefficients (in d2_ij and d3_ijk) and the coefficients of the subsequent orders.
These scaling factors are recorded in the attribute "logscale" of the return value, which is a vector/matrix/array whose size is identical to the return value, so that value / exp(attr (value, "logscale")) equals the original quantities to be obtained (if there were no overflow).
The qfrm and qfmrm functions handle return values of these functions by first multiplying them with hypergeometric coefficients (which are typically $\ll 1$) and then scaling the products back to the original scale using the recorded scaling factors. (To be precise, this typically happens within hgs functions.) The C++ functions handle the problem similarly (but by using separate objects rather than attributes).
However, this procedure does not always mitigate the problem in multiple series; when there are very large and very small coefficients in the same order, smaller ones can diminish/underflow to the numerical 0 after repeated scaling. (The qfrm and qfmrm functions try to detect and warn against this by examining whether any of the highest-order terms is 0 .) The present version of this package has implemented two methods to mitigate this problem, but only through C_{++}functions. One is to use the long double variable type, and the other is to use coefficient-wise scaling (see qfrm and qfmrm).

Value

Vector of length $m+1$, corresponding to the 0 th, 1 st, \ldots, and m th order terms. Hence, the [m +1]-th element should be extracted when the coefficient for the m th order term is required.
Has the attribute "logscale" as described in "Scaling" above.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.
Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant polynomials with applications. Econometric Theory, 25, 211-242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, $\mathbf{3 0}$, 436-473. doi:10.1017/S0266466613000364.

See Also

 qfpm, qfrm, and qfmrm are major front-end functions that utilize these functions dtil2_pq for \tilde{d} used for moments of a product of quadratic forms d2_ij and d3_ijk for d, h, \tilde{h}, and \hat{h} used for moments of ratios of quadratic formsCoefficients in polynomial expansion of generating function-for ratios with two matrices

Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating functions for two quadratic forms in potentially noncentral multivariate normal variables, $\mathbf{x} \sim$ $N_{n}\left(\boldsymbol{\mu}, \mathbf{I}_{n}\right)$. They are primarily used in calculations around moments of a ratio involving two or three quadratic forms.

Usage

```
d2_ij_m(
        A1,
        A2,
    \(\mathrm{m}=100 \mathrm{~L}\),
    \(\mathrm{p}=\mathrm{m}\),
    \(q=m\),
    thr_margin = 100,
    fill_all = !missing(p) || !missing(q)
)
d2_ij_v(
    L1,
    L2,
    \(\mathrm{m}=100 \mathrm{~L}\),
    \(\mathrm{p}=\mathrm{m}\),
    \(q=m\),
    thr_margin = 100,
    fill_all = !missing(p) || !missing(q)
)
d2_pj_m(A1, A2, m = 100L, p = 1L, thr_margin = 100)
d2_1j_m(A1, A2, m = 100L, thr_margin = 100)
d2_pj_v(L1, L2, m = 100L, p = 1L, thr_margin = 100)
d2_1j_v(L1, L2, m = 100L, thr_margin = 100)
h2_ij_m(
    A1,
    A2,
    \(\mathrm{mu}=\mathrm{rep} . \operatorname{int}(0, \mathrm{n})\),
    \(m=100 \mathrm{~L}\),
    \(\mathrm{p}=\mathrm{m}\),
```

```
    q = m,
    thr_margin = 100,
    fill_all = !missing(p) || !missing(q)
)
h2_ij_v(
    L1,
    L2,
    mu = rep.int(0, n),
    m = 100L,
    p = m,
    q = m,
    thr_margin = 100,
    fill_all = !missing(p) || !missing(q)
)
htil2_pj_m(A1, A2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
htil2_1j_m(A1, A2, mu = rep.int(0, n), m = 100L, thr_margin = 100)
htil2_pj_v(L1, L2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
htil2_1j_v(L1, L2, mu = rep.int(0, n), m = 100L, thr_margin = 100)
hhat2_pj_m(A1, A2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
hhat2_1j_m(A1, A2, mu = rep.int(0, n), m = 100L, thr_margin = 100)
hhat2_pj_v(L1, L2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
hhat2_1j_v(L1, L2, mu = rep.int(0, n), m = 100L, thr_margin = 100)
```


Arguments

A1, A2 Argument matrices. Assumed to be symmetric and of the same order.
m Integer-alike to specify the desired order along A2/L2
$p, q \quad$ Integer-alikes to specify the desired orders along A1/L1 and A2/L2, respectively.
thr_margin Optional argument to adjust the threshold for scaling (see "Scaling" in d1_i)
fill_all Logical to specify whether all the output matrix should be filled. See "Details".
L1, L2 Eigenvalues of the argument matrices
mu \quad Mean vector $\boldsymbol{\mu}$ for \mathbf{x}

Details

d2_**_*() functions calculate $d_{i, j}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ in Hillier et al. $(2009,2014)$ and Bao and Kan (2013). These are also related to the top-order invariant polynomials $C_{\left[k_{1}\right],\left[k_{2}\right]}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ in the following
way: $d_{i, j}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\frac{1}{k_{1}!k_{2}!}\left(\frac{1}{2}\right)_{k_{1}+k_{2}} C_{\left[k_{1}\right],\left[k_{2}\right]}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$, where $(x)_{k}=x(x+1) \ldots(x+k-1)$ (Chikuse 1987; Hillier et al. 2009).
h2_ij_* () and htil2_pj_*() functions calculate $h_{i, j}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ and $\tilde{h}_{i, j}\left(\mathbf{A}_{1} ; \mathbf{A}_{2}\right)$, respectively, in Bao and Kan (2013). Note that the latter is denoted by the symbol $h_{i, j}$ in Hillier et al. (2014). hhat2_pj_*() functions are for $\hat{h}_{i, j}\left(\mathbf{A}_{1} ; \mathbf{A}_{2}\right)$ in Hillier et al. (2014), used to calculate an error bound for truncated sum for moments of a ratio of quadratic forms. The mean vector $\boldsymbol{\mu}$ is a parameter in all these.
There are two different situations in which these coefficients are used in calculation of moments of ratios of quadratic forms: 1) within an infinite series for one of the subscripts, with the other subscript fixed (when the exponent p of the numerator is integer); 2) within a double infinite series for both subscripts (when p is non-integer) (see Bao and Kan 2013). In this package, the situation 1 is handled by the *_pj_* (and *_ $1 j_{-} *$) functions, and $\mathbf{2}$ is by the *_ $^{i} j_{-} *$ functions.
In particular, the *_pj_* functions always return a $(p+1) *(m+1)$ matrix where all elements are filled with the relevant coefficients (e.g., $d_{i, j}, \tilde{h}_{i, j}$), from which, typically, the [p+1,]-th row is used for subsequent calculations. (Those with *_1q_* are simply fast versions for the commonly used case where $p=1$.) On the other hand, the *_ij_* functions by default return a ($m+1$) * (m +1) matrix whose upper-left triangular part (including the diagonals) is filled with the coefficients ($d_{i, j}$ or $h_{i, j}$), the rest being 0 , and all the coefficients are used in subsequent calculations.
(At present, the *_ij_* functions also have the functionality to fill all coefficients of a potentially non-square output matrix, but this is less efficient than *_pj_* functions so may be omitted in the future development.)

Those ending with _m take matrices as arguments, whereas those with _v take eigenvalues. The latter can be used only when the argument matrices share the same eigenvectors, to which the eigenvalues correspond in the orders given, but is substantially faster.
This package also involves C++ equivalents for most of these functions (which are suffixed by E for Eigen), but these are exclusively for internal use and not exposed to the user.

Value

$(p+1) *(m+1)$ matrix for the *_pj_* functions.
$(m+1) *(m+1)$ matrix for the *_ij_* functions.
The rows and columns correspond to increasing orders for \mathbf{A}_{1} and \mathbf{A}_{2}, respectively. And the 1st row/column of each dimension corresponds to the 0 th order (hence $[p+1, q+1]$ for the (p, q)-th order).
Has the attribute "logscale" as described in the "Scaling" section in d1_i. This is a matrix of the same size as the return itself.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.

Chikuse, Y. (1987) Methods for constructing top order invariant polynomials. Econometric Theory, 3, 195-207. doi:10.1017/S026646660001029X.
Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant polynomials with applications. Econometric Theory, 25, 211-242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30, 436-473. doi:10.1017/S0266466613000364.

See Also

qfrm and qfmrm are major front-end functions that utilize these functions
dtil2_pq for \tilde{d} used for moments of a product of quadratic forms
d3_ijk for equivalents for three matrices

$$
\begin{array}{ll}
\text { d3_ijk } & \begin{array}{l}
\text { Coefficients in polynomial expansion of generating function-for ra- } \\
\text { tios with three matrices }
\end{array}
\end{array}
$$

Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating functions for three quadratic forms in potentially noncentral multivariate normal variables, $\mathbf{x} \sim$ $N_{n}\left(\boldsymbol{\mu}, \mathbf{I}_{n}\right)$. They are primarily used in calculations around moments of a ratio involving three quadratic forms.

Usage

```
d3_ijk_m(
    A1,
    A2,
    A3,
    \(\mathrm{m}=100 \mathrm{~L}\),
    \(p=m\),
    \(q=m\),
    \(r=m\),
    thr_margin = 100,
    fill_across = c(!missing(p), !missing(q), !missing(r))
)
    d3_ijk_v(
    L1,
    L2,
    L3,
    \(\mathrm{m}=100 \mathrm{~L}\),
    \(p=m\),
    \(q=m\),
    \(r=m\),
    thr_margin \(=100\),
    fill_across = c(!missing(p), !missing(q), !missing(r))
)
```

```
d3_pjk_m(A1, A2, A3, m = 100L, p = 1L, thr_margin = 100)
d3_pjk_v(L1, L2, L3, m = 100L, p = 1L, thr_margin = 100)
h3_ijk_m(
        A1,
        A2,
        A3,
    mu = rep.int(0, n),
    m = 100L,
    p = m,
    q = m,
    r = m,
    thr_margin = 100,
    fill_across = c(!missing(p), !missing(q), !missing(r))
)
h3_ijk_v(
    L1,
    L2,
    L3,
    mu = rep.int(0, n),
    m = 100L,
    p = m,
    q = m,
    r = m,
    thr_margin = 100,
    fill_across = c(!missing(p), !missing(q), !missing(r))
)
htil3_pjk_m(A1, A2, A3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
htil3_pjk_v(L1, L2, L3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
hhat3_pjk_m(A1, A2, A3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
hhat3_pjk_v(L1, L2, L3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)
```


Arguments

A1, A2, A3
m
thr_margin
fill_across
$p, q, r \quad$ Integer-alikes to specify the desired orders along $A 1 / L 1, A 2 / L 2$, and $A 3 / L 3$, respectively.
Argument matrices. Assumed to be symmetric and of the same order.
Integer-alike to specify the desired order along A2/L2 and A3/L3 Optional argument to adjust the threshold for scaling (see "Scaling" in d1_i)

Logical vector of length 3, to specify whether each dimension of the output matrix should be filled.

L1, L2, L3	Eigenvalues of the argument matrices
mu	Mean vector $\boldsymbol{\mu}$ for \mathbf{x}

Details

All these functions have equivalents for two-matrix cases ($\mathrm{d} 2 _i j$), to which the user is referred for documentations. The primary difference of these functions from the latter is the addition of arguments for the third matrix $A 3 / L 3$.
d3_*jk_*() functions calculate $d_{i, j, k}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right)$ in Hillier et al. $(2009,2014)$ and Bao and Kan (2013). These are also related to the top-order invariant polynomials as described in d2_ij.
h3_ijk_* (), htil3_pjk_*(), and hhat3_pjk_*() functions calculate $h_{i, j, k}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right), \tilde{h}_{i ; j, k}\left(\mathbf{A}_{1} ; \mathbf{A}_{2}, \mathbf{A}_{3}\right)$, and $\hat{h}_{i ; j, k}\left(\mathbf{A}_{1} ; \mathbf{A}_{2}, \mathbf{A}_{3}\right)$, respectively, as described in the package vignette. These are equivalent to similar coefficients described in Bao and Kan (2013) and Hillier et al. (2014).
The difference between the *_pjk_* and *_ijk_* functions is as described for *_pj_* and *_ij_* (see "Details" in d2_ij). The only difference is that these functions return a 3D array. In the *_pjk_* functions, all the slices along the first dimension (i.e., [i, ,]) are an upper-left triangular matrix like what the *_ij_* functions return in the 2D case; in other words, the return has the coefficients for the terms that satisfy $j+k \leq m$ for all $i=0,1, \ldots, p$. Typically, the [$\mathrm{p}+1$, ,]-th slice is used for subsequent calculations. In the return of the *_ijk_* functions, only the triangular prism close to the $[1,1,1]$ is filled with coefficients, which correspond to the terms satisfying $i+j+k \leq m$.

Value

$(p+1) *(m+1) *(m+1)$ array for the *_pjk_* functions
$(m+1) *(m+1) *(m+1)$ array for the *_ijk_* functions (by default; see "Details").
The 1st, 2 nd, and 3 rd dimensions correspond to increasing orders for $\mathbf{A}_{1}, \mathbf{A}_{2}$, and \mathbf{A}_{3}, respectively. And the 1 st row/column of each dimension corresponds to the 0 th order (hence $[p+1, q+1, r+$ $1]$ for the (p, q, r)-th order).
Has the attribute "logscale" as described in the "Scaling" section in d1_i. This is an array of the same size as the return itself.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.
Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, $\mathbf{3 0}$, 436-473. doi:10.1017/S0266466613000364.

See Also

qfmrm is a major front-end function that utilizes these functions
dtil2_pq for \tilde{d} used for moments of a product of quadratic forms
d2_ij for equivalents for two matrices

Description

dqfr (): Density of the (power of) ratio of quadratic forms, $\left(\frac{\mathbf{x}^{T} \mathbf{A x}}{\mathbf{x}^{T} \mathbf{B} \mathbf{x}}\right)^{p}$, where $\mathbf{x} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
pqfr (): Distribution function of the same.
$q q f r()$: Quantile function of the same.
dqfr_A1I1 (): internal for dqfr(), exact series expression of Hillier (2001). Only accommodates the simple case where $\mathbf{B}=\mathbf{I}_{n}$ and $\boldsymbol{\mu}=\mathbf{0}_{n}$.
dqfr_broda(): internal for dqfr(), exact numerical inversion algorithm of Broda \& Paolella (2009).
dqfr_butler(): internal for dqfr(), saddlepoint approximation of Butler \& Paolella (2007, 2008).
pqfr_A1B1 (): internal for pqfr(), exact series expression of Forchini (2002, 2005).
pqfr_imhof(): internal for pqfr(), exact numerical inversion algorithm of Imhof (1961).
pqfr_davies(): internal for pqfr(), exact numerical inversion algorithm of Davies (1973, 1980). This is experimental and may be removed in the future.
pqfr_butler(): internal for pqfr(), saddlepoint approximation of Butler \& Paolella (2007, 2008).
The user is supposed to use the exported functions dqfr(), pqfr (), and qqfr(), which are (pseudo)vectorized with respect to quantile or probability. The actual calculations are done by one of the internal functions, which only accommodate a length-one quantile. The internal functions skip most checks on argument structures and do not accommodate Sigma to reduce execution time.

```
Usage
    dqfr(
        quantile,
        A,
        B,
        p = 1,
        mu = rep.int(0, n),
        Sigma = diag(n),
        log = FALSE,
        method = c("broda", "hillier", "butler"),
        trim_values = TRUE,
        normalize_spa = FALSE,
        return_abserr_attr = FALSE,
        m = 100L,
        tol_zero = .Machine$double.eps * 100,
        tol_sing = tol_zero,
    )
```

```
pqfr(
    quantile,
    A,
    B,
    p = 1,
    mu = rep.int(0, n),
    Sigma = diag(n),
    lower.tail = TRUE,
    log.p = FALSE,
    method = c("imhof", "davies", "forchini", "butler"),
    trim_values = TRUE,
    return_abserr_attr = FALSE,
    m = 100L,
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    )
qqfr(
    probability,
    A,
    B,
    p = 1,
    mu = rep.int(0, n),
    Sigma = diag(n),
    lower.tail = TRUE,
    log.p = FALSE,
    trim_values = FALSE,
    return_abserr_attr = FALSE,
    stop_on_error = FALSE,
    m = 100L,
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    epsabs_q = .Machine$double.eps^(1/2),
    maxiter_q = 5000,
)
dqfr_A1I1(
    quantile,
    LA,
    m = 100L,
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    tol_conv = .Machine$double.eps^(1/4),
    thr_margin = 100
)
```

```
dqfr_broda(
    quantile,
        A,
        B,
    mu = rep.int(0, n),
    autoscale_args = 1,
    stop_on_error = TRUE,
    use_cpp = TRUE,
    tol_zero = .Machine$double.eps * 100,
    epsabs = epsrel,
    epsrel = 1e-06,
    limit = 10000
)
dqfr_butler(
    quantile,
        A,
        B,
    mu = rep.int(0, n),
    order_spa = 2,
    stop_on_error = FALSE,
    use_cpp = TRUE,
    tol_zero = .Machine$double.eps * 100,
    epsabs = .Machine$double.eps^(1/2),
    epsrel = 0,
    maxiter = 5000
)
pqfr_A1B1(
    quantile,
    A,
    B,
    m = 100L,
    mu = rep.int(0, n),
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    stop_on_error = FALSE,
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    thr_margin = 100
)
pqfr_imhof(
    quantile,
    A,
    B,
```

```
    mu = rep.int(0, n),
    autoscale_args = 1,
    stop_on_error = TRUE,
    use_cpp = TRUE,
    tol_zero = .Machine$double.eps * 100,
    epsabs = epsrel,
    epsrel = 1e-06,
    limit = 10000
)
pqfr_davies(
    quantile,
    A,
    B,
    mu = rep.int(0, n),
    autoscale_args = 1,
    stop_on_error = NULL,
    tol_zero = .Machine$double.eps * 100,
    ...
)
pqfr_butler(
    quantile,
    A,
    B,
    mu = rep.int(0, n),
    order_spa = 2,
    stop_on_error = FALSE,
    use_cpp = TRUE,
        tol_zero = .Machine$double.eps * 100,
        epsabs = .Machine$double.eps^(1/2),
        epsrel = 0,
        maxiter = 5000
)
```


Arguments

quantile \quad Numeric vector of quantiles q
A, B Argument matrices. Should be square. B should be nonnegative definite. Will be automatically symmetrized in dqfr () and pqfr().
$\mathrm{p} \quad$ Positive exponent of the ratio, default 1. Unlike in qfrm() , the numerator and denominator cannot have different exponents. When p is non-integer, A must be nonnegative definite. For details, see vignette vignette("qfratio_distr").
mu Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
Sigma Covariance matrix $\boldsymbol{\Sigma}$ for \mathbf{x}
log, lower.tail, log.p
Logical; as in regular probability distribution functions. But these are for convenience only, and not meant for accuracy.

	Method to specify an internal function (see "Details"). In dqfr (), options are: "broda" default; uses dqfr_broda(), numerical inversion of Broda \& Paolella (2009) "hillier" uses dqfr_A1I1(), series expression of Hillier (2001) "butler" uses dqfr_butler(), saddlepoint approximation of Butler \& Paolella $(2007,2008)$ In pqfr(), options are: "imhof" default; uses pqfr_imhof(), numerical inversion of Imhof (1961) "davies" uses pqfr_davies(), numerical inversion of Davies (1973, 1980) "forchini" uses pqfr_A1B1 (), series expression of Forchini $(2002,2005)$ "butler" uses pqfr_butler(), saddlepoint approximation of Butler \& Paolella (2007, 2008)
trim_values	If TRUE (default), numerical values outside the mathematically permissible support are trimmed in (see "Details")
normalize_spa	If TRUE and method == "butler", result is normalized so that the density integrates to unity (see "Details")
return_abserr_attr	
	If TRUE, absolute error of numerical evaluation is returned as an attribute "abserr" (see "Value")
m	Order of polynomials at which the series expression is truncated. M in Hillier et al. $(2009,2014)$.
tol_zero	Tolerance against which numerical zero is determined. Used to determine, e.g., whether mu is a zero vector, A or B equals the identity matrix, etc.
tol_sing	Tolerance against which matrix singularity and rank are determined. The eigenvalues smaller than this are considered zero.
	Additional arguments passed to internal functions. In qqfr(), these are passed to pqfr() .
probability	Numeric vector of probabilities
stop_on_error	If TRUE, execution is stopped upon an error (including non-convergence) in evaluation of hypergeometric function, numerical integration, or root finding. If FALSE, further execution is attempted regardless.
LA	Eigenvalues of A
check_convergence	
	Specifies how numerical convergence is checked for series expression (see qfrm)
use_cpp	Logical to specify whether the calculation is done with $\mathrm{C}++$ functions via Rcpp. TRUE by default.
tol_conv	Tolerance against which numerical convergence of series is checked. Used with check_convergence.
thr_margin	Optional argument to adjust the threshold for scaling (see "Scaling" in d1_i). Passed to internal functions ($\mathrm{d} 1 _i, \mathrm{~d} 2 _i j, \mathrm{~d} 3 _i j k$) or their $\mathrm{C}++$ equivalents.
autoscale_args	Numeric; if >0 (default), arguments are scaled to avoid failure in numerical integration (see vignette("qfratio_distr")). If <= 0, the scaling is skipped.

\(\left.\begin{array}{ll}epsabs, epsrel, \& limit, maxiter, epsabs_q, maxiter_q

Optional arguments used in numerical integration or root-finding algorithm (see

vignette: vignette("qfratio_distr")). In qqfr (), epsabs_q and maxiter_q

are used in root-finding for quantiles whereas epsabs and maxiter are passed

to pqfr() internally.\end{array}\right]\)| Numeric to determine order of saddlepoint approximation. More accurate second- |
| :--- |
| order approximation is used for any order > 1 (default); otherwise, (very slightly) |
| faster first-order approximation is used. |

Details

qqfr() is based on numerical root-finding with pqfr() using uniroot(), so its result can be affected by the numerical errors in both the algorithm used in pqfr() and root-finding.
dqfr_A1I1 () and pqfr_A1B1 () evaluate the probability density and (cumulative) distribution function, respectively, as a partial sum of infinite series involving top-order zonal or invariant polynomials (Hillier 2001; Forchini 2002, 2005). As in other functions of this package, these are evaluated with the recursive algorithm d1_i.
pqfr_imhof() and pqfr_davies() evaluate the distribution function by numerical inversion of the characteristic function based on Imhof (1961) or Davies (1973, 1980), respectively. The latter calls davies(), and the former with use_cpp = FALSE calls imhof(), from the package CompQuadForm. Additional arguments for davies() can be passed via . . ., except for sigma, which is not applicable.
dqfr_broda() evaluates the probability density by numerical inversion of the characteristic function using Geary's formula based on Broda \& Paolella (2009). Parameters for numerical integration can be controlled via the arguments epsabs, epsrel, and limit (see vignette: vignette("qfratio_distr")).
dqfr_butler() and pqfr_butler() evaluate saddlepoint approximations of the density and distribution function, respectively, based on Butler \& Paolella (2007, 2008). These are fast but not exact. They conduct numerical root-finding for the saddlepoint by the Brent method, parameters for which can be controlled by the arguments epsabs, epsrel, and maxiter (see vignette: vignette("qfratio_distr")). The saddlepoint approximation density does not integrate to unity, but can be normalized by dqfr (. . . , method = "butler", normalize_spa = TRUE). Note that this is usually slower than $\operatorname{dqfr}(\ldots$, method = "broda") for a small number of quantiles.
The density is undefined, and the distribution function has points of nonanalyticity, at the eigenvalues of $\mathbf{B}^{-1} \mathbf{A}$ (assuming nonsingular \mathbf{B}). Around these points, the series expressions tends to fail. Avoid using the series expression methods for these cases.
Algorithms based on numerical integration can yield spurious results that are outside the mathematically permissible support; e.g., $[0,1]$ for $\operatorname{pqfr}()$. By default, dqfr() and pqfr() trim those values into the permissible range with a warning; e.g., negative p-values are replaced by $\sim 2.2 e-14$ (default tol_zero). Turn trim_values = FALSE to skip these trimming and warning, although pqfr_imhof() and pqfr_davies() can still throw a warning from CompQuadForm functions. Note that, on the other hand, all these functions try to return exact 0 or 1 when q is outside the possible range of the statistic.

Value

dqfr() and pqfr() give the density and distribution (or p-values) functions, respectively, corresponding to quantile, whereas qqfr() gives the quantile function corresponding to probability.
When return_abserr_attr = TRUE, an absolute error bound of numerical evaluation is returned as an attribute; this feature is currently available with dqfr(..., method = "broda"), pqfr (..., method = "imhof"), and qqfr (..., method = "imhof") (all default) only. This error bound is automatically transformed when trimming happens with trim_values (above) or when log/log.p $=$ TRUE. See vignette for details (vignette("qfratio_distr")).
The internal functions return a list containing $\$ \mathrm{~d}$ or $\$ \mathrm{p}$ (for density and lower p-value, respectively), and only this is passed to the external function by default. Other components may be inspected for debugging purposes:
dqfr_A1I1 () and pqfr_A1B1 () have \$terms, a vector of 0th to m th order terms.
pqfr_imhof() and dqfr_broda() have \$abserr, absolute error of numerical integration; the one returned from CompQuadForm: :imhof() is divided by pi, as the integration result itself is (internally). This is passed to the external functions when return_abserr_attr = TRUE (above).
pqfr_davies() has the same components as CompQuadForm: : davies() apart from Qq which is replaced by $p=1-Q q$.

References

Broda, S. and Paolella, M. S. (2009) Evaluating the density of ratios of noncentral quadratic forms in normal variables. Computational Statistics and Data Analysis, 53, 1264-1270. doi:10.1016/ j.csda.2008.10.035

Butler, R. W. and Paolella, M. S. (2007) Uniform saddlepoint approximations for ratios of quadratic forms. Technical Reports, Department of Statistical Science, Southern Methodist University, no. 351. [Available on arXiv as a preprint.] doi:10.48550/arXiv.0803.2132

Butler, R. W. and Paolella, M. S. (2008) Uniform saddlepoint approximations for ratios of quadratic forms. Bernoulli, 14, 140-154. doi:10.3150/07BEJ6169
Davis, R. B. (1973) Numerical inversion of a characteristic function. Biometrika, 60, 415-417. doi:10.1093/biomet/60.2.415.
Davis, R. B. (1980) Algorithm AS 155: The distribution of a linear combination of χ^{2} random variables. Journal of the Royal Statistical Society, Series C-Applied Statistics, 29, 323-333. doi:10.2307/2346911.

Forchini, G. (2002) The exact cumulative distribution function of a ratio of quadratic forms in normal variables, with application to the AR(1) model. Econometric Theory, 18, 823-852. doi:10.1017/ S0266466602184015.
Forchini, G. (2005) The distribution of a ratio of quadratic forms in noncentral normal variables. Communications in Statistics-Theory and Methods, 34, 999-1008. doi:10.1081/STA200056855.

Hillier, G. (2001) The density of quadratic form in a vector uniformly distributed on the n-sphere. Econometric Theory, 17, 1-28. doi:10.1017/S026646660117101X.

Imhof, J. P. (1961) Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 419-426. doi:10.1093/biomet/48.34.419.

See Also

```
rqfr, a Monte Carlo random number generator
vignette("qfratio_distr") for theoretical details
```


Examples

```
## Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
mu <- 0.2 * nv:1
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1
## density and p-value for ( }\mp@subsup{x}{}{\wedge}\top A x ) / ( ( ^^\top x) where x ~ N(0, I)
dqfr(1.5, A)
pqfr(1.5,A)
## 95 percentile for the same
qqfr(0.95, A)
qqfr(0.05, A, lower.tail = FALSE) # same
## P{ ( }\mp@subsup{x}{}{\wedge}\top A x) / ( (x^\top B x) <= 1.5} where x ~ N(mu, Sigma)
pqfr(1.5, A, B, mu = mu, Sigma = Sigma)
## These are (pseudo-)vectorized
qs <- 0:nv + 0.5
dqfr(qs, A, B, mu = mu)
(pres <- pqfr(qs, A, B, mu = mu))
## Quantiles for above p-values
## Results equal qs, except that those for prob = 0 and 1
## are replaced by mininum and maximum of the ratio
qqfr(pres, A, B, mu = mu) # = qs
## Various methods for density
dqfr(qs, A, method = "broda") # default
dqfr(qs, A, method = "hillier") # series; B, mu, Sigma not permitted
## Saddlepoint approximations (fast but inexact):
dqfr(qs, A, method = "butler") # 2nd order by default
dqfr(qs, A, method = "butler", normalize_spa = TRUE) # normalized
dqfr(qs, A, method = "butler", normalize_spa = TRUE,
    order_spa = 1) # 1st order, normalized
## Various methods for distribution function
pqfr(qs, A, method = "imhof") # default
pqfr(qs, A, method = "davies") # very similar
pqfr(qs, A, method = "forchini") # series expression
pqfr(qs, A, method = "butler") # saddlepoint approximation (2nd order)
pqfr(qs, A, method = "butler", order_spa = 1) # 1st order
## To see error bounds
```

```
dqfr(qs, A, return_abserr_attr = TRUE)
pqfr(qs, A, return_abserr_attr = TRUE)
qqfr(pres, A, return_abserr_attr = TRUE)
```

```
dtil2_pq Coefficients in polynomial expansion of generating function-for
products
```


Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating functions for two or three quadratic forms in potentially noncentral multivariate normal variables, $\mathbf{x} \sim N_{n}\left(\boldsymbol{\mu}, \mathbf{I}_{n}\right)$. They are primarily used to calculate moments of a product of two or three quadratic forms.

Usage

dtil2_pq_m(A1, A2, mu = rep.int(0, n), $p=1 \mathrm{~L}, \mathrm{q}=1 \mathrm{~L})$
dtil2_1q_m(A1, A2, mu $=\operatorname{rep} . \operatorname{int}(0, \mathrm{n}), \mathrm{q}=1 \mathrm{~L})$
dtil2_pq_v(L1, L2, mu = rep.int(0, n), $p=1 L, q=1 L)$
dtil2_1q_v(L1, L2, mu = rep.int(0, n), q = 1L)
dtil3_pqr_m(A1, A2, A3, mu = rep.int(0, n), p = 1L, q = 1L, r = 1L)
dtil3_pqr_v(L1, L2, L3, mu = rep.int(0, $n), p=1 L, q=1 L, r=1 L)$

Arguments

A1, A2, A3 Argument matrices. Assumed to be symmetric and of the same order.
mu Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
$p, q, r \quad$ Integer-alikes to specify the order along the three argument matrices
L1, L2, L3 Eigenvalues of the argument matrices

Details

dtil2_pq_m() and dtil2_pq_v() calculate $\tilde{d}_{p, q}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ in Hillier et al. (2014). dtil2_1q_m() and dtil2_1q_v() are fast versions for the commonly used case where $p=1$. Similarly, dtil3_pqr_m() and dtil3_pqr_v() are for $\tilde{d}_{p, q, r}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right)$.
Those ending with _m take matrices as arguments, whereas those with _v take eigenvalues. The latter can be used only when the argument matrices share the same eigenvectors, to which the eigenvalues correspond in the orders given, but is substantially faster.

These functions calculate the coefficients based on the super-short recursion algorithm described in Hillier et al. (2014: sec. 4.2).

Value

A $(p+1) *(q+1)$ matrix for the 2D functions, or a $(p+1) *(q+1) *(r+1)$ array for the 3D functions.
The 1st, 2nd, and 3rd dimensions correspond to increasing orders for $\mathbf{A}_{1}, \mathbf{A}_{2}$, and \mathbf{A}_{3}, respectively. And the 1 st row/column of each dimension corresponds to the 0 th order (hence $[p+1, q+1]$ for the (p, q)-th moment).

References

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, $\mathbf{3 0}$, 436-473. doi:10.1017/S0266466613000364.

See Also

qfpm is a front-end functions that utilizes these functions
d1_i for a single-matrix equivalent of \tilde{d}
hgs Calculate hypergeometric series

Description

These internal functions calculate (summands of) hypergeometric series.
hgs_1d() calculates the hypergeometric series $c \frac{\left(a_{1}\right)_{i}}{(b)_{i}} d_{i}$
hgs_2d() calculates the hypergeometric series $c \frac{\left(a_{1}\right)_{i}\left(a_{2}\right)_{j}}{\left(b_{i+j}\right.} d_{i, j}$
hgs_3d() calculates the hypergeometric series $c \frac{\left(a_{1}\right)_{i}\left(a_{2}\right)_{j}\left(a_{3}\right)_{k}}{(b)_{i+j+k}} d_{i, j, k}$

Usage

hgs_1d(dks, a1, b, lconst = 0)
hgs_2d(dks, a1, a2, b, lconst = 0)
hgs_3d(dks, a1, a2, a3, b, lconst = 0)

Arguments

dks $\quad(m+1)$ vector for $d_{i},(m+1) *(m+1)$ square matrix for $d_{i, j}$, or $(m+1) *(m+$ $1) *(m+1)$ array for $d_{i, j, k}(i, j, k=0,1, \ldots m)$
a1, a2, a3 Numerator parameters
b
Denominator parameter
lconst Scalar $\log c$

Details

The denominator parameter b is assumed positive, whereas the numerator parameters can be positive or negative. The signs of the latter will be reflected in the result.

Value

Numeric with the same dimension with dks

```
hyperg_1F1_vec_b Internal C++ wrappers for GSL
```


Description

These are internal C++ functions which wrap hypergeometric functions from GSL with vectorization. These are for particular use cases in this package, and direct access by the user is not assumed.

Usage

hyperg_1F1_vec_b(a, bvec, x)
hyperg_2F1_mat_a_vec_c(Amat, b, cvec, x)

Arguments

a, b Parameters of hypergeometric functions; passed as double
bvec, cvec Parameters of hypergeometric functions; passed as Rcpp: :NumericVector
x Argument of hypergeometric functions; passed as double
Amat Parameter of hypergeometric functions; passed as Rcpp: :NumericMatrix. Dimension must be square of the length of cvec.

Value

Return a list via Rcpp: : List of the following:
\$val Evaluation result, numeric
\$err Absolute error, numeric
\$status Error code, integer
In hyperg_1F1_vec_b, these are vectors from Rcpp: : NumericVector and Rcpp: : IntegerVector, whereas in hyperg_2F1_mat_a_vec_c, they are matrices from Rcpp: : NumericMatrix and Rcpp: : IntegerMatrix.

Functions

- hyperg_1F1_vec_b(): wrapper of gsl_hyperg_1F1_e(), looping along bvec
- hyperg_2F1_mat_a_vec_c(): wrapper of gsl_hyperg_2F1_e(), looping along Amat and recycling cvec

Description

This internal function is used to determine whether two vectors/matrices have the same elements (or, a vector/matrix is all equal to 0) using all. equal(). Attributes and dimensions are ignored as they are passed as vectors using $c()$.

Usage

iseq(x, y = rep.int(0, length(x)), tol = .Machine\$double.eps * 100)

Arguments

x	Main target vector/matrix in all. equal()
y	current in all.equal(). Default zero vector.
tol	Numeric to specify tolerance in all. equal()

See Also

all.equal
is_diagonal Is this matrix diagonal?

Description

This internal function is used to determine whether a square matrix is diagonal (within a specified tolerance). Returns TRUE when the absolute values of all off-diagonal elements are below tol, using all.equal().

Usage

is_diagonal(A, tol = .Machine\$double.eps * 100, symmetric = FALSE)

Arguments

$$
\begin{array}{ll}
\text { A } & \text { Square matrix. No check is done. } \\
\text { tol } & \text { Numeric to specify tolerance in all. equal() } \\
\text { symmetric } & \text { If FALSE (default), sum of absolute values of the corresponding lower and upper } \\
\text { triangular elements are examined with a doubled tol. If TRUE, only the lower } \\
& \text { triangular elements are examined assuming symmetry. }
\end{array}
$$

See Also

all.equal

KiK

Matrix square root and generalized inverse

Description

This internal function calculates the decomposition $\mathbf{S}=\mathbf{K K}^{T}$ for an $n \times n$ covariance matrix \mathbf{S}, so that \mathbf{K} is an $n \times m$ matrix with m being the rank of \mathbf{S}. Returns this \mathbf{K} and its generalized inverse, \mathbf{K}^{-}, in a list.

Usage

KiK(S, tol = .Machine\$double.eps * 100)

Arguments

S Covariance matrix. Symmetry and positive (semi-)definiteness are checked.
tol Tolerance to determine the rank of S. Eigenvalues smaller than this value are considered zero.

Details

At present, this utilizes $\operatorname{svd}()$, although there may be better alternatives.

Value

List with K and iK , with the latter being K^{-}

```
new_qfrm Construct qfrm object
```


Description

These are internal "constructor" functions used to make qfrm and qfpm objects, which are used as a return value from the $q f r m, q f m r m$, and $q f p m$ functions.

Usage

new_qfrm(statistic, error_bound = NULL, terms = statistic, seq_error = NULL, exact = FALSE, twosided = FALSE, alphaout = FALSE,

```
    singular_arg = FALSE,
    diminished = FALSE,
    class = character()
)
new_qfpm(statistic, exact = TRUE, ..., class = character())
```


Arguments

statistic	Terminal value (partial sum) for the moment. When missing, obtained as sum(terms).
error_bound	Terminal error bound. When missing, obtained as seq_error[length(seq_error)].
terms	Terms in series expression for the moment along varying polynomial degrees
seq_error exact, twosided, alphaout, singular_arg	Vector of error bounds corresponding to cumsum(terms)
	Logicals used to append attributes to the resultant error bound (see "Value")
diminished	Logical used to append attribute to the resultant statistic and terms (see "Value")
\ldots	Additional arguments for accommodating subclasses
class	Character vector to (pre-)append classes to the return value

Value

new_qfrm() and new_qfpm() return a list of class qfrm and c (qfpm, qfrm), respectively. These classes are defined for the print and plot methods.

The return object is a list of 4 elements which are intended to be:
\$statistic evaluation result (sum(terms))
\$terms vector of 0th to m th order terms
\$error_bound error bound of statistic
\$seq_error vector of error bounds corresponding to partial sums (cumsum(terms))
When the result is exact, \$terms can be of length 1 and equal to \$statistic. This is always the case for the qfpm class.
When the relevant flags are provided in the constructor, \$error_bound and \$seq_error have the following attributes which control behaviors of the print and plot methods:
"exact" indicates whether the moment is exact
"twosided" indicates whether the error bounds are two-sided
"alphaout" indicates whether any of the scaling factors (alphaA, alphaB, alphaD) is outside $(0,1]$, when error bound does not strictly hold
"singular" indicates whether the relevant argument matrix is (numerically) singular, in which case the error bound is invalid

Similarly, when diminished = TRUE, \$statistic and \$terms have the attribute "diminished" being TRUE, which indicates that numerical underflow/diminishing happened during scaling (see "Scaling" in d1_i).

See Also

qfrm, qfmrm, qfpm: functions that return objects of these classes
methods.qfrm: the print and plot methods
print.qfrm Methods for qfrm and qfpm objects

Description

Straightforward print and plot methods are defined for q frm and $q f p m$ objects which result from the $q f r m$, $q f m r m$, and $q f p m$ functions.

Usage

```
## S3 method for class 'qfrm'
print(
    x,
    digits = getOption("digits"),
    show_range = !is.null(x$error_bound),
    )
    ## S3 method for class 'qfpm'
    print(x, digits = getOption("digits"), ...)
    ## S3 method for class 'qfrm'
    plot(
        x,
        add_error = length(x$seq_error) > 0,
        add_legend = add_error,
        ylim = x$statistic * ylim_f,
        ylim_f = c(0.9, 1.1),
        xlab = "Order of evaluation",
        ylab = "Moment of ratio",
        col_m = "royalblue4",
        col_e = "tomato",
        lwd_m = 1,
        lwd_e = 1,
        lty_m = 1,
        lty_e = 2,
        pos_leg = "topright",
        ...
    )
```


Arguments

x	qfrm or qfpm object
digits	Number of significant digits to be printed.
show_range	Logical to specify whether the possible range for the moment is printed (when available). Default TRUE when available.
	In the plot methods, passed to plot. default. In the print methods, ignored (retained for the compatibility with the generic method).
add_error	Logical to specify whether the sequence of error bounds is plotted (when available). Default TRUE when available.
add_legend	Logical to specify whether a legend is added. Turned on by default when add_error = TRUE.
ylim, ylim_f	ylim is passed to plot. default. By default, this is automatically set to ylim_f times the terminal value of the series expression ($x \$$ statistic). ylim_f is by default c (0.9, 1.1).
xlab, ylab	Passed to plot.default
col_m, col_e,	d_m, lwd_e, lty_m, lty_e col, lwd, and lty to plot the sequences of the moment (***_m) and its error bound (***_e)
pos_leg	Position of the legend, e.g., "topright", "bottomright", passed as the first argument for legend

Details

The print methods simply display the moment $\times \$$ statistic (typically a partial sum), its error
 $x \$$ statistic + x\$error_bound in case of one-sided error bound; x\$statistic - x\$error_bound to $x \$$ statistic $+x \$$ error_bound in case of two-sided).

The plot method is designed for quick inspection of the profile of the partial sum of the series along varying orders cumsum ($x \$$ terms). When the object has a sequence for error bounds $x \$$ seq_error, this is also shown with a broken line (by default). When the object has an exact moment (i.e., resulting from qfrm_ApIq_int() or the qfpm functions), a message is thrown to tell inspection of the plot will not be required in this case.

Value

The print method invisibly returns the input.
The plot method is used for the side effect (and invisibly returns NULL).

See Also

new_qfrm: descriptions of the classes and their "constructors"

Examples

```
nv <- 4
A <- diag(nv:1)
B <- diag(1:nv)
mu <- rep.int(1, nv)
res1 <- qfrm(A, B, p = 3, mu = mu)
print(res1)
print(res1, digits = 5)
print(res1, digits = 10)
## Default plot: ylim too narrow to see the error bound at this m
plot(res1)
## With extended ylim
plot(res1, ylim_f = c(0.8, 1.2), pos_leg = "topleft")
## In this case, it is easy to increase m
(res2 <- qfrm(A, B, p = 3, mu = mu, m = 200))
plot(res2)
```

p_A1B1_Ed Internal $C++$ functions

Description

These are internal C++ functions called from corresponding R functions when use_cpp = TRUE. Direct access by the user is not assumed. All parameters are assumed to be appropriately structured.

Usage

p_A1B1_Ed(
quantile,
A,
B,
mu,
m,
stop_on_error,
thr_margin = 100,
nthreads $=0 \mathrm{~L}$,
tol_zero $=2.2 e-14$
)
p_A1B1_El(
quantile,
A,
B,

```
    mu,
    m,
    stop_on_error,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
p_A1B1_Ec(
    quantile,
    A,
    B,
    mu,
    m,
    stop_on_error,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
d_A1I1_Ed(quantile, LA, m, thr_margin = 100)
p_imhof_Ed(
    quantile,
    A,
    B,
    mu,
    autoscale_args,
    stop_on_error,
    tol_zero,
    epsabs,
    epsrel,
    limit
)
d_broda_Ed(
    quantile,
    A,
    B,
    mu,
    autoscale_args,
    stop_on_error,
    tol_zero,
    epsabs,
    epsrel,
    limit
)
```

```
d_butler_Ed(
    quantile,
    A,
    B,
    mu,
    order_spa,
    stop_on_error,
    tol_zero,
    epsabs,
    epsrel,
    maxiter
)
p_butler_Ed(
    quantile,
    A,
    B,
    mu,
    order_spa,
    stop_on_error,
    tol_zero,
    epsabs,
    epsrel,
    maxiter
)
Ap_int_E(A, mu, p_ = 1, thr_margin = 100, tol_zero = 2.2e-14)
ABpq_int_E(A, LB, mu, p_ = 1, q_ = 1, thr_margin = 100, tol_zero = 2.2e-14)
ABDpqr_int_E(
    A,
    LB,
    D,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    thr_margin = 100,
    tol_zero = 2.2e-14
)
ApIq_int_cE(A, p_ = 1, q_ = 1, thr_margin = 100)
ApIq_int_nE(A, mu, p_ = 1, q_ = 1, thr_margin = 100)
ApIq_npi_cE(
    LA,
```

```
    bA,
    p_ = 1,
    q_ = 1,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100
)
ApIq_npi_nEd(
    LA,
    bA,
    mu,
    p_ = 1,
    q_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 1L
)
ApBq_int_E(
    A,
    LB,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100,
    tol_zero = 2.2e-14
)
ApBq_npi_Ed(
    A,
    LB,
    bA,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBIqr_int_cEd(
    A,
```

```
    LB,
    bB,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100,
    tol_zero = 2.2e-14
)
ApBIqr_int_nEd(
    A,
    LB,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBIqr_npi_Ed(
    A,
    LB,
    bA,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
IpBDqr_gen_Ed(
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1,
```

```
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_int_Ed(
    A,
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_npi_Ed(
    A,
    LB,
    D,
    bA,
    bB,
    bD,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApIq_npi_nEc(
    LA,
    bA,
    mu,
    p_ = 1,
    q_ = 1,
    m = 100L,
```

```
    thr_margin = 100,
    nthreads = 1L
)
ApBq_npi_Ec(
    A,
    LB,
    bA,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBIqr_int_nEc(
    A,
    LB,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBIqr_npi_Ec(
    A,
    LB,
    bA,
    bB,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
```

```
IpBDqr_gen_Ec(
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_int_Ec(
    A,
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_npi_Ec(
    A,
    LB,
    D,
    bA,
    bB,
    bD,
    mu,
    p_ = 1,
    q_ = 1,
    r_ = 1,
    m = 100L,
    thr_margin = 100,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
```

```
ApIq_npi_nEl(
    LA,
        bA,
        mu,
        p_ = 1L,
        q_ = 1L,
        m = 100L,
        thr_margin = 100L,
        nthreads = 1L
)
ApBq_npi_El(
        A,
        LB,
        bA,
        bB,
        mu,
        p_ = 1L,
        q_ = 1L,
        m = 100L,
        thr_margin = 100L,
        nthreads = 0L,
        tol_zero = 2.2e-14
)
ApBIqr_int_nEl(
    A,
    LB,
    bB,
    mu,
    p_ = 1L,
    q_ = 1L,
    r_ = 1L,
    m = 100L,
    error_bound = TRUE,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBIqr_npi_El(
    A,
LB,
bA,
bB,
mu,
\(p_{-}=1 \mathrm{~L}\),
\(q_{-}=1 L\),
```

```
    r_ = 1L,
    m = 100L,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
IpBDqr_gen_El(
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1L,
    q_ = 1L,
    r_ = 1L,
    m = 100L,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_int_El(
    A,
    LB,
    D,
    bB,
    bD,
    mu,
    p_ = 1L,
    q_ = 1L,
    r_ = 1L,
    m = 100L,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
ApBDqr_npi_El(
    A,
    LB,
    D,
    bA,
    bB,
    bD,
    mu,
    p_ = 1L,
    q_ = 1L,
```

```
    r_ = 1L,
    m = 100L,
    thr_margin = 100L,
    nthreads = 0L,
    tol_zero = 2.2e-14
)
rqfpE(nit, A, B, D, p_, q_, r_, mu, Sigma)
```


Arguments

quantile \quad Scalar of quantile q, passed as double
A, B, D
Argument matrices passed as Eigen: :Matrix. Symmetry is assumed.
mu
Mean vector $\boldsymbol{\mu}$ for \mathbf{x} passed as Eigen: : Array. For d_broda_Ed(), assumed to be rotated by the eigenvectors of $\mathbf{A}-q \mathbf{B}$
m Integer to specify the order of polynomials at which the series expression is truncated. Passed as Eigen: :Index (aka std: :ptrdiff_t or long long int)
stop_on_error bool to specify whether execution is stopped upon error in numerical integration or root finding
thr_margin Optional argument to adjust the threshold for scaling. See "Scaling" in d1_i.
nthreads int to specify the number of threads in OpenMP-enabled functions. See "Multithreading" in qfrm.
tol_zero Tolerance against which numerical zero is determined
LA, LB Eigenvalues of the argument matrices passed as Eigen: : Array
autoscale_args Factor to which the largest absolute eigenvalue of $\mathbf{A}-q \mathbf{B}$ is scaled, passed as double
epsrel, epsabs, limit, maxiter Optional arguments passed to gsl_integration_qagi() or gsl_root_test_delta()
order_spa int to specify order of saddlepoint approximation
$p_{-}, q_{-}, r_{-} \quad$ Exponents for \mathbf{A}, \mathbf{B}, and \mathbf{D}. Passed as double or long double.
bA, bB, bD Scaling coefficients for \mathbf{A}, \mathbf{B}, and \mathbf{D}. Passed as double or long double.
error_bound bool to specify whether the error bound is returned
nit int to specify the number of iteration or sample size
Sigma Covariance matrix $\boldsymbol{\Sigma}$ for \mathbf{x}. Passed as Eigen: :Matrix.

Details

ApIq_int_nmE() calls the C function gsl_sf_hyperg_1F1() from GSL via RcppGSL.

Value

All return a list via Rcpp: : List of the following (as appropriate):
\$ans Exact moment, from double or long double
\$ansseq Series for the moment, from Eigen: : Array
\$errseq Series of errors, from Eigen: :Array
\$twosided Logical, from bool
\$dimnished Logical, from bool

Functions

- p_A1B1_Ed(): pqfm_A1B1(), double
- p_A1B1_El(): pqfm_A1B1 (), long double
- p_A1B1_Ec(): pqfm_A1B1 (), coefficient-wise scaling
- d_A1I1_Ed(): dqfm_A1I1()
- p_imhof_Ed(): pqfm_imhof()
- d_broda_Ed(): dqfm_broda()
- d_butler_Ed(): dqfm_butler()
- p_butler_Ed(): pqfm_butler()
- Ap_int_E(): qfm_Ap_int()
- ABpq_int_E(): qfpm_ABpq_int()
- ABDpqr_int_E(): qfpm_ABDpqr_int()
- ApIq_int_cE(): qfrm_ApIq_int(), central
- ApIq_int_nE(): qfrm_ApIq_int(), noncentral
- ApIq_npi_cE(): qfrm_ApIq_npi(), central
- ApIq_npi_nEd(): qfrm_ApIq_npi(), noncentral, double
- ApBq_int_E(): qfrm_ApBq_int()
- ApBq_npi_Ed(): qfrm_ApBq_npi(), double
- ApBIqr_int_cEd(): qfmrm_ApBIqr_int(), central
- ApBIqr_int_nEd(): qfmrm_ApBIqr_int(), noncentral, double
- ApBIqr_npi_Ed(): qfmrm_ApBIqr_npi(), double
- IpBDqr_gen_Ed(): qfmrm_IpBDqr_gen(), double
- ApBDqr_int_Ed(): qfmrm_ApBDqr_int(), double
- ApBDqr_npi_Ed(): qfmrm_ApBDqr_npi(), double
- ApIq_npi_nEc(): qfrm_ApIq_npi(), noncentral, coefficient-wise scaling
- ApBq_npi_Ec(): qfrm_ApBq_npi(), coefficient-wise scaling
- ApBIqr_int_nEc(): qfmrm_ApBIqr_int(), noncentral, coefficient-wise scaling
- ApBIqr_npi_Ec(): qfmrm_ApBIqr_npi(), coefficient-wise scaling
- IpBDqr_gen_Ec(): qfmrm_IpBDqr_gen(), double
- ApBDqr_int_Ec(): qfmrm_ApBDqr_int(), coefficient-wise scaling
- ApBDqr_npi_Ec(): qfmrm_ApBDqr_npi(), coefficient-wise scaling
- ApIq_npi_nEl(): qfrm_ApIq_npi(), noncentral, long double
- ApBq_npi_El(): qfrm_ApBq_npi(), long double
- ApBIqr_int_nEl(): afmrm_ApBIqr_int(), noncentral, long double
- ApBIqr_npi_El(): qfmrm_ApBIqr_npi(), long double
- IpBDqr_gen_El(): qfmrm_IpBDqr_gen(), long double
- ApBDqr_int_El(): qfmrm_ApBDqr_int(), long double
- ApBDqr_npi_El(): qfmrm_ApBDqr_npi(), long double
- rqfpE(): rqfp()
qfmrm Moment of multiple ratio of quadratic forms in normal variables

Description

qfmrm() is a front-end function to obtain the (compound) moment of a multiple ratio of quadratic forms in normal variables in the following special form: $\mathrm{E}\left(\frac{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)^{p}}{\left(\mathbf{x}^{T} \mathbf{B x}\right)^{q}\left(\mathbf{x}^{T} \mathbf{D} \mathbf{x}\right)^{r}}\right)$, where $\mathbf{x} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Like qfrm(), this function calls one of the following "internal" functions for actual calculation, as appropriate.
qfmrm_ApBIqr_int(): For $\mathbf{D}=\mathbf{I}_{n}$ and positive-integral p
qfmrm_ApBIqr_npi(): For $\mathbf{D}=\mathbf{I}_{n}$ and non-integral p
qfmrm_IpBDqr_gen(): For $\mathbf{A}=\mathbf{I}_{n}$
qfmrm_ApBDqr_int(): For general \mathbf{A}, \mathbf{B}, and \mathbf{D}, and positive-integral p
qfmrm_ApBDqr_npi(): For general A, B, and D, and non-integral p

Usage

qfmrm(
A,
B,
D,
$p=1$,
$q=p / 2$,
$r=q$,
$m=100 \mathrm{~L}$,
mu = rep.int(0, n),
Sigma $=\operatorname{diag}(n)$,
tol_zero = .Machine\$double.eps * 100,
tol_sing = tol_zero,
)
qfmrm_ApBIqr_int(
A,
B,

```
    p = 1,
    q = 1,
    r = 1,
    m = 100L,
    mu = rep.int(0, n),
    error_bound = TRUE,
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 0,
    alphaB = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfmrm_ApBIqr_npi(
    A,
    B,
    p = 1,
    q = 1,
    r = 1,
    m = 100L,
    mu = rep.int(0, n),
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 0,
    alphaA = 1,
    alphaB = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfmrm_IpBDqr_gen(
    B,
    D,
    p = 1,
    q = 1,
    r=1,
    mu = rep.int(0, n),
    m = 100L,
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
```

```
    nthreads = 0,
    alphaB = 1,
    alphaD = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfmrm_ApBDqr_int(
    A,
    B,
    D,
    p = 1,
    q = 1,
    r = 1,
    m = 100L,
    mu = rep.int(0, n),
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 0,
    alphaB = 1,
    alphaD = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfmrm_ApBDqr_npi(
    A,
    B,
    D,
    p = 1,
    q = 1,
    r = 1,
    m = 100L,
    mu = rep.int(0, n),
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 0,
    alphaA = 1,
    alphaB = 1,
    alphaD = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
```

```
        tol_sing = tol_zero,
        thr_margin = 100
)
```


Arguments

A, B, D	Argument matrices. Should be square. Will be automatically symmetrized.
$\mathrm{p}, \mathrm{q}, \mathrm{r}$	Exponents for \mathbf{A}, \mathbf{B}, and \mathbf{D}, respectively. By default, q equals $p / 2$ and r equals q. If unsure, specify all explicitly.
m	Order of polynomials at which the series expression is truncated. M in Hillier et al. (2009, 2014).
mu	Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
Sigma	Covariance matrix $\boldsymbol{\Sigma}$ for \mathbf{x}. Accommodated only by the front-end qfmrm(). See "Details" in qfrm.
tol_zero	Tolerance against which numerical zero is determined. Used to determine, e.g., whether mu is a zero vector, A or B equals the identity matrix, etc.
tol_sing	Tolerance against which matrix singularity and rank are determined. The eigenvalues smaller than this are considered zero.
	Additional arguments in the front-end qfmrm() will be passed to the appropriate "internal" function.
error_bound check_conve	Logical to specify whether an error bound is returned (if available). ce

Specifies how numerical convergence is checked (see "Details"). Options:
"relative" default; magnitude of the last term of the series relative to the sum is compared with tol_conv
"strict_relative" or TRUE same, but stricter than default by setting tol_conv $=$.Machine\$double.eps (unless a smaller value is specified by the user)
"absolute" absolute magnitude of the last term is compared with tol_conv
"none" or FALSE skips convergence check
use_cpp Logical to specify whether the calculation is done with $\mathrm{C}++$ functions via Rcpp. TRUE by default.
cpp_method Method used in C++ calculations to avoid numerical overflow/underflow (see "Details"). Options:
"double" default; fastest but prone to underflow in some conditions
"long_double" same algorithm but using the long double variable type; robust but slow and memory-inefficient
"coef_wise" coefficient-wise scaling algorithm; most robust but variably slow
nthreads Number of threads used in OpenMP-enabled C++ functions. See "Multithreading" in qfrm.
tol_conv Tolerance against which numerical convergence of series is checked. Used with check_convergence.
thr_margin Optional argument to adjust the threshold for scaling (see "Scaling" in d1_i). Passed to internal functions ($\mathrm{d} 1 _i, \mathrm{~d} 2 _i j, \mathrm{~d} 3 _i j k$) or their $\mathrm{C}++$ equivalents.
alphaA, alphaB, alphaD
Factors for the scaling constants for \mathbf{A}, \mathbf{B}, and \mathbf{D}, respectively. See "Details" in qfrm.

Details

The usage of these functions is similar to $q f r m$, to which the user is referred for documentation. It is assumed that $\mathbf{B} \neq \mathbf{D}$ (otherwise, the problem reduces to a simple ratio).
When B is identity or missing, this and its exponent q will be swapped with D and r, respectively, before q fmrm_ApBIqr_***() is called.

The existence conditions for the moments of this multiple ratio can be reduced to those for a simple ratio, provided that one of the null spaces of \mathbf{B} and \mathbf{D} is a subspace of the other (including the case they are null). The conditions of Bao and Kan (2013: proposition 1) can then be applied by replacing q and m there by $q+r$ and $\min (\operatorname{rank}(\mathbf{B}), \operatorname{rank}(\mathbf{D}))$, respectively (see also Smith 1989: p. 258 for nonsingular \mathbf{B}, \mathbf{D}). An error is thrown if these conditions are not met in this case. Otherwise (i.e., \mathbf{B} and \mathbf{D} are both singular and neither of their null spaces is a subspace of the other), it seems difficult to define general moment existence conditions. A sufficient condition can be obtained by applying the same proposition with a new denominator matrix whose null space is union of those of \mathbf{B} and \mathbf{D} (Watanabe, 2023). A warning is thrown if that condition is not met in this case.
Most of these functions, excepting qfmrm_ApBIqr_int () with zero mu, involve evaluation of multiple series, which can suffer from numerical overflow and underflow (see "Scaling" in d1_i and "Details" in qfrm). To avoid this, cpp_method = "long_double" or "coef_wise" options can be used (see "Details" in qfrm).

Value

A qfrm object, as in $q f r m()$ functions.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.
Smith, M. D. (1989). On the expectation of a ratio of quadratic forms in normal variables. Journal of Multivariate Analysis, 31, 244-257. doi:10.1016/0047259X(89)900651.
Watanabe, J. (2023) Exact expressions and numerical evaluation of average evolvability measures for characterizing and comparing G matrices. Journal of Mathematical Biology, 86, 95. doi:10.1007/ s00285023019308.

See Also

qfrm for simple ratio

Examples

```
## Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
D <- diag((1:nv)^2 / nv)
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1
```

```
## Expectation of (x^\top A x)^2 / (x^\top B x) (x^\top x) where x ~ N(0, I)
(res1 <- qfmrm(A, B, p = 2, q = 1, r = 1))
plot(res1)
# The above internally calls the following:
qfmrm_ApBIqr_int(A, B, p = 2, q = 1, r = 1) ## The same
# Similar result with different expression
# This is a suboptimal option and throws a warning
qfmrm_ApBIqr_npi(A, B, p = 2, q = 1, r = 1)
## Expectation of (x^\top A x) / (x^\top B x)^(1/2) (x^T D x)^(1/2) where x ~ N(0, I)
(res2 <- qfmrm(A, B, D, p = 1, q = 1/2, r = 1/2))
plot(res2)
# The above internally calls the following:
qfmrm_ApBDqr_int(A, B, D, p = 1, q = 1/2, r = 1/2) ## The same
## Average response correlation between A and B
(res3 <- qfmrm(crossprod(A, B), crossprod(A), crossprod(B),
    p = 1, q = 1/2, r = 1/2))
plot(res3)
## Same, but with x ~ N(mu, Sigma)
(res4 <- qfmrm(crossprod(A, B), crossprod(A), crossprod(B),
    p = 1, q = 1/2, r = 1/2, mu = mu, Sigma = Sigma))
plot(res4)
## Average autonomy of D
(res5 <- qfmrm(B = D, D = solve(D), p = 2, q = 1, r = 1))
plot(res5)
```


Description

Functions to obtain (compound) moments of a product of quadratic forms in normal variables, i.e., $\mathrm{E}\left(\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)^{p}\left(\mathbf{x}^{T} \mathbf{B} \mathbf{x}\right)^{q}\left(\mathbf{x}^{T} \mathbf{D} \mathbf{x}\right)^{r}\right)$, where $\mathbf{x} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
$\mathrm{qfm} _A p _i n t()$ is for $q=r=0$ (simple moment)
qfpm_ABpq_int() is for $r=0$
qfpm_ABDpqr_int() is for the product of all three powers

Usage

qfm_Ap_int(
A,

```
    p = 1,
    mu = rep.int(0, n),
    Sigma = diag(n),
    use_cpp = TRUE,
    cpp_method = "double",
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero
)
qfpm_ABpq_int(
    A,
    B,
    p = 1,
    q = 1,
    mu = rep.int(0, n),
    Sigma = diag(n),
    use_cpp = TRUE,
    cpp_method = "double",
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero
)
qfpm_ABDpqr_int(
    A,
    B,
    D,
    p = 1,
    q = 1,
    r = 1,
    mu = rep.int(0, n),
    Sigma = diag(n),
    use_cpp = TRUE,
    cpp_method = "double",
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero
)
```


Arguments

A, B, D	Argument matrices. Should be square. Will be automatically symmetrized.
p, q, r	Exponents for \mathbf{A}, \mathbf{B}, and \mathbf{D}, respectively. By default, these are set to the same value. If unsure, specify all explicitly.
mu	Mean vector $\boldsymbol{\mu}$ for \mathbf{x}
Sigma	Covariance matrix $\boldsymbol{\Sigma}$ for \mathbf{x}
use_cpp	Logical to specify whether the calculation is done with $C++$ functions via Rcpp. TRUE by default.
cpp_method	Variable type used in C++ calculations. In these functions this is ignored.

tol_zero Tolerance against which numerical zero is determined. Used to determine, e.g., whether mu is a zero vector, A or B equals the identity matrix, etc.
tol_sing Tolerance against which matrix singularity and rank are determined. The eigenvalues smaller than this are considered zero.

Details

These functions implement the super-short recursion algorithms described in Hillier et al. (2014: sec. 3.1-3.2 and 4). At present, only positive integers are accepted as exponents (negative exponents yield ratios, of course). All these yield exact results.

Value

A qfpm object which has the same elements as those returned by the qfrm functions. Use \$statistic to access the value of the moment.

See Also

qfrm and qfmrm for moments of ratios

Examples

```
## Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
D <- diag((1:nv)^2 / nv)
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1
## Expectation of ( }\mp@subsup{x}{}{\wedge}\top A x)^2 where x ~ N(0, I)
qfm_Ap_int(A, 2)
## This is the same but obviously less efficient
qfpm_ABpq_int(A, p = 2, q = 0)
## Expectation of ( }\mp@subsup{x}{}{\wedge}\top A x) ( (x^\top B x) ( (x^\top D x) where x ~ N(0, I)
qfpm_ABDpqr_int(A, B, D, 1, 1, 1)
## Expectation of ( }\mp@subsup{x}{}{\wedge}\top A x) ( ( *^\top B x) ( ( ^^\top D x) where x ~ N(mu, Sigma)
qfpm_ABDpqr_int(A, B, D, 1, 1, 1, mu = mu, Sigma = Sigma)
## Expectations of (x^\top
## i.e., roundabout way to obtain moments of
## central and noncentral chi-square variables
qfm_Ap_int(diag(nv), 2)
qfm_Ap_int(diag(nv), 2, mu = mu)
```

qfrm Moment of ratio of quadratic forms in normal variables

Description

qfrm() is a front-end function to obtain the (compound) moment of a ratio of quadratic forms in normal variables, i.e., $\mathrm{E}\left(\frac{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)^{p}}{\left(\mathbf{x}^{T} \mathbf{B} \mathbf{x}\right)^{q}}\right)$, where $\mathbf{x} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Internally, qfrm() calls one of the following functions which does the actual calculation, depending on \mathbf{A}, \mathbf{B}, and p. Usually the best one is automatically selected.
qfrm_ApIq_int(): For $\mathbf{B}=\mathbf{I}_{n}$ and positive-integral p.
qfrm_ApIq_npi (): For $\mathbf{B}=\mathbf{I}_{n}$ and non-positive-integral p (fraction or negative).
qfrm_ApBq_int(): For general \mathbf{B} and positive-integral p.
qfrm_ApBq_npi(): For general B and non-integral p.

Usage

qfrm(
A,
B,
$p=1$,
$q=p$,
$m=100 \mathrm{~L}$,
mu = rep.int(0, n),
Sigma $=\operatorname{diag}(n)$,
tol_zero = .Machine\$double.eps * 100,
tol_sing = tol_zero,
)
qfrm_ApIq_int(
A,
$p=1$,
$q=p$,
$m=100 \mathrm{~L}$,
$m u=\operatorname{rep} . \operatorname{int}(0, n)$,
use_cpp = TRUE,
exact_method = TRUE,
cpp_method = "double",
nthreads = 1 ,
tol_zero = .Machine\$double.eps * 100,
thr_margin = 100
)
qfrm_ApIq_npi(
A,

```
    p = 1,
    q = p,
    m = 100L,
    mu = rep.int(0, n),
    error_bound = TRUE,
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 1,
    alphaA = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfrm_ApBq_int(
    A,
    B,
    p = 1,
    q = p,
    m = 100L,
    mu = rep.int(0, n),
    error_bound = TRUE,
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = "double",
    nthreads = 1,
    alphaB = 1,
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
qfrm_ApBq_npi(
    A,
    B,
    p = 1,
    q = p,
    m = 100L,
    mu = rep.int(0, n),
    check_convergence = c("relative", "strict_relative", "absolute", "none"),
    use_cpp = TRUE,
    cpp_method = c("double", "long_double", "coef_wise"),
    nthreads = 0,
    alphaA = 1,
    alphaB = 1,
```

```
    tol_conv = .Machine$double.eps^(1/4),
    tol_zero = .Machine$double.eps * 100,
    tol_sing = tol_zero,
    thr_margin = 100
)
```


Arguments

\(\left.$$
\begin{array}{ll}\text { A, B } & \begin{array}{l}\text { Argument matrices. Should be square. Will be automatically symmetrized. } \\
\text { p, q } \\
\text { Exponents corresponding to A and B, respectively. When only one is provided, } \\
\text { the other is set to the same value. Should be length-one numeric (see "Details" } \\
\text { for further conditions). }\end{array}
$$

Order of polynomials at which the series expression is truncated. M in Hillier

et al. (2009, 2014).

Mean vector \boldsymbol{\mu} for x\end{array}\right]\)| Covariance matrix $\boldsymbol{\Sigma}$ for x. Accommodated only by the front-end qfrm(). See |
| :--- |
| mu "Details". |

"strict_relative" or TRUE same, but stricter than default by setting tol_conv $=$.Machine\$double.eps (unless a smaller value is specified by the user)
"absolute" absolute magnitude of the last term is compared with tol_conv
"none" or FALSE skips convergence check
alphaA, alphaB Factors for the scaling constants for A and B, respectively. See "Details".
tol_conv Tolerance against which numerical convergence of series is checked. Used with check_convergence.

Details

These functions use infinite series expressions based on the joint moment-generating function (with the top-order zonal/invariant polynomials) (see Smith 1989, Hillier et al. 2009, 2014; Bao and Kan 2013), and the results are typically partial (truncated) sums from these infinite series, which necessarily involve truncation errors. (An exception is when $\mathbf{B}=\mathbf{I}_{n}$ and p is a positive integer, the case handled by qfrm_ApIq_int().)
The returned value is a list consisting of the truncated sequence up to the order specified by m, its sum, and error bounds corresponding to these (see "Values"). The print method only displays the terminal partial sum and its error bound (when available). Use plot() for visual inspection, or the ordinary list element access as required.
In most cases, p and q must be nonnegative (in addition, p must be an integer in qfrm_ApIq_int () and qfrm_ApBq_int() when used directly), and an error is thrown otherwise. The only exception is qfrm_ApIq_npi() which accepts negative exponents to accommodate $\frac{\left(\mathbf{x}^{T} \mathbf{x}\right)^{q}}{\left(\mathbf{x}^{T} \mathbf{A x}\right)^{p}}$. Even in the latter case, the exponents must have the same sign. (Technically, not all of these conditions are necessary for the mathematical results to hold, but they are enforced for simplicity).
When error_bound = TRUE (default), qfrm_ApBq_int () evaluates a truncation error bound following Hillier et al. (2009: theorem 6) or Hillier et al. (2014: theorem 7) (for zero and nonzero means, respectively). qfrm_ApIq_npi() implements similar error bounds. No error bound is known for qfrm_ApBq_npi () to the author's knowledge.

For situations when the error bound is unavailable, a very rough check of numerical convergence is also conducted; a warning is thrown if the magnitude of the last term does not look small enough. By default, its relative magnitude to the sum is compared with the tolerance controlled by tol_conv, whose default is .Machine\$double.eps^(1/4) (=~1.2e-04) (see check_convergence).
When Sigma is provided, the quadratic forms are transformed into a canonical form; that is, using the decomposition $\boldsymbol{\Sigma}=\mathbf{K K}^{T}$, where the number of columns m of \mathbf{K} equals the rank of $\boldsymbol{\Sigma}$, $\mathbf{A}_{\text {new }}=\mathbf{K}^{T} \mathbf{A K}, \mathbf{B}_{\text {new }}=\mathbf{K}^{T} \mathbf{B K}$, and $\mathbf{x}_{\text {new }}=\mathbf{K}^{-} \mathbf{x} \sim N_{m}\left(\mathbf{K}^{-} \boldsymbol{\mu}, \mathbf{I}_{m}\right)$. qfrm() handles this by transforming A, B, and mu and calling itself recursively with these new arguments. Note that the "internal" functions do not accommodate Sigma (the error for unused arguments will happen). For singular $\boldsymbol{\Sigma}$, one of the following conditions must be met for the above transformation to be valid: 1) $\boldsymbol{\mu}$ is in the range of $\boldsymbol{\Sigma} ; \mathbf{2}) \mathbf{A}$ and \mathbf{B} are in the range of $\boldsymbol{\Sigma}$; or $\mathbf{3}$) $\mathbf{A} \boldsymbol{\mu}=\mathbf{B} \boldsymbol{\mu}=\mathbf{0}_{n}$. An error is thrown if none is met with a singular Sigma.
The existence of the moment is assessed by the eigenstructures of \mathbf{A} and \mathbf{B}, p, and q, according to Bao and Kan (2013: proposition 1). An error will result if the conditions are not met.

Straightforward implementation of the original recursive algorithms can suffer from numerical overflow when the problem is large. Internal functions ($\mathrm{d} 1 _i, \mathrm{~d} 2 _i j, \mathrm{~d} 3 _i j k$) are designed to avoid overflow by order-wise scaling. However, when evaluation of multiple series is required
(qfrm_ApIq_npi() with nonzero mu and qfrm_ApBq_npi()), the scaling occasionally yields underflow/diminishing of some terms to numerical 0 , causing inaccuracy. A warning is thrown in this case. (See also "Scaling" in d1_i.) To avoid this problem, the C++ versions of these functions have two workarounds, as controlled by cpp_method. 1) The "long_double" option uses the long double variable type instead of the regular double. This is generally slow and most memoryinefficient. 2) The "coef_wise" option uses a coefficient-wise scaling algorithm with the double variable type. This is generally robust against underflow issues. Computational time varies a lot with conditions; generally only modestly slower than the "double" option, but can be the slowest in some extreme conditions.

For the sake of completeness (only), the scaling parameters β (see the package vignette) can be modified via the arguments alphaA and alphaB. These are the factors for the inverses of the largest eigenvalues of \mathbf{A} and \mathbf{B}, respectively, and must be between 0 and 2. The default is 1 , which should suffice for most purposes. Values larger than 1 often yield faster convergence, but are not recommended as the error bound will not strictly hold (see Hillier et al. 2009, 2014).

Multithreading:

All these functions use C++ versions to speed up computation by default. Furthermore, some of the C++ functions, in particular those using more than one matrix arguments, are parallelized with OpenMP (when available). Use the argument nthreads to control the number of OpenMP threads. By default (nthreads = 0), one-half of the processors detected with omp_get_num_procs() are used. This is except when all the argument matrices share the same eigenvectors and hence the calculation only involves element-wise operations of eigenvalues. In that case, the calculation is typically fast without parallelization, so nthreads is automatically set to 1 unless explicitly specified otherwise; the user can still specify a larger value or 0 for (typically marginal) speed gains in large problems.

Exact method for qfrm_ApIq_int():

An exact expression of the moment is available when p is integer and $\mathbf{B}=\mathbf{I}_{n}$ (handled by qfrm_ApIq_int()), whose expression involves a confluent hypergeometric function when $\boldsymbol{\mu}$ is nonzero (Hillier et al. 2014: theorem 4). There is an option (exact_method=FALSE) to use the ordinary infinite series expression (Hillier et al. 2009), which is less accurate and slow.

Value

A qfrm object consisting of the following:
\$statistic evaluation result (sum(terms))
$\$$ terms vector of 0th to m th order terms
\$error_bound error bound of statistic
\$seq_error vector of error bounds corresponding to partial sums (cumsum(terms))

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis, 117, 229-245. doi:10.1016/j.jmva.2013.03.002.

Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant polynomials with applications. Econometric Theory, 25, 211-242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30, 436-473. doi:10.1017/S0266466613000364.
Smith, M. D. (1989) On the expectation of a ratio of quadratic forms in normal variables. Journal of Multivariate Analysis, 31, 244-257. doi:10.1016/0047259X(89)900651.
Smith, M. D. (1993) Expectations of ratios of quadratic forms in normal variables: evaluating some top-order invariant polynomials. Australian Journal of Statistics, 35, 271-282. doi:10.1111/j.1467842X.1993.tb01335.x.

See Also

qfmrm for multiple ratio

Examples

```
## Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1
## Expectation of ( (\mp@subsup{x}{}{\wedge}T A x \)^2 / ( (x^\top x)^2 where x ~ N(0, I)
## An exact expression is available
(res1 <- qfrm(A, p = 2))
# The above internally calls the following:
qfrm_ApIq_int(A, p = 2) ## The same
# Similar result with different expression
# This is a suboptimal option and throws a warning
qfrm_ApIq_npi(A, p = 2)
## Expectation of ( }\mp@subsup{x}{}{\wedge}\top
## Note how quickly the series converges in this case
(res2 <- qfrm(A, p = 1/2))
plot(res2)
# The above calls:
qfrm_ApIq_npi(A, p = 0.5)
# This is not allowed (throws an error):
try(qfrm_ApIq_int(A, p = 0.5))
## (x^\top A x)^2 / (x^\ B x)^3 where x ~ N(0, I)
(res3 <- qfrm(A, B, 2, 3))
plot(res3)
## (x^T A x)^2 / ( }\mp@subsup{x}{}{\wedge}\top B x)^2 where x ~ N(mu, I)
## Note the two-sided error bound
```

```
(res4 <- qfrm(A, B, 2, 2, mu = mu))
plot(res4)
## ( (x^\top A x )^2 / ( }\mp@subsup{x}{}{\wedge}\top B x)^2 where x ~ N(mu, Sigma)
(res5 <- qfrm(A, B, p = 2, q = 2, mu = mu, Sigma = Sigma))
plot(res5)
# Sigma is not allowed in the "internal" functions:
try(qfrm_ApBq_int(A, B, p = 2, q = 2, Sigma = Sigma))
# In res5 above, the error bound didn't converge
# Use larger m to evaluate higher-order terms
plot(print(qfrm(A, B, p = 2, q = 2, mu = mu, Sigma = Sigma, m = 300)))
```

range_qfr

Get range of ratio of quadratic forms

Description

range_qfr(): internal function to obtain the possible range of a ratio of quadratic forms, $\frac{\mathbf{x}^{T} \mathbf{A x}}{\mathbf{x}^{T} \mathbf{B x}}$. gen_eig() is an internal function to obtain generalized eigenvalues, i.e., roots of $\operatorname{det} \mathbf{A}-\lambda \mathbf{B}=0$, which are the eigenvalues of $\mathbf{B}^{-1} \mathbf{A}$ if \mathbf{B} is nonsingular.

Usage

```
range_qfr(
    A,
    B,
    eigB = eigen(B, symmetric = TRUE),
    tol = .Machine$double.eps * 100,
    t = 0.001
)
gen_eig(
    A,
    B,
    eigB = eigen(B, symmetric = TRUE),
    Ad = with(eigB, crossprod(crossprod(A, vectors), vectors)),
    tol = .Machine$double.eps * 100,
    t = 0.001
)
```


Arguments

A, B
Symmetric matrices. No check is done.
eigB \quad Result of eigen(B) can be passed when already computed
tol Tolerance to determine numerical zero
t
Tolerance used to determine whether estimates are numerically stable; t in Jennings et al. (1978).

Ad A rotated with eigenvectors of B can be passed when already computed

Details

gen_eig() solves the generalized eigenvalue problem with Jennings et al.'s (1978) algorithm. The sign of infinite eigenvalue (when present) cannot be determined from this algorithm, so is deduced as follows: (1) \mathbf{A} and \mathbf{B} are rotated by the eigenvectors of \mathbf{B}; (2) the submatrix of rotated \mathbf{A} corresponding to the null space of \mathbf{B} is examined; (3) if this is nonnegative (nonpositive) definite, the result must have positive (negative, resp.) infinity; if this is indefinite, the result must have both positive and negative infinities; if this is (numerically) zero, the result must have NaN . The last case is expeted to happen very rarely, as in this case Jennings algorithm would fail. This is where the null space of \mathbf{B} is a subspace of that of \mathbf{A}, so that the range of ratio of quadratic forms can be well-behaved. range_qfr() tries to detect this case and handle the range accordingly, but if that is infeasible it returns c (-Inf, Inf).

References

Jennings, A., Halliday, J. and Cole, M. J. (1978) Solution of linear generalized eigenvalue problems containing singular matrices. Journal of the Institute of Mathematics and Its Applications, 22, 401410. doi:10.1093/imamat/22.4.401.

```
rqfr Monte Carlo sampling of ratio/product of quadratic forms
```


Description

$\operatorname{rqfr}(), r q f m r()$, and $r q f p()$ calculate a random sample of a simple ratio, multiple ratio (of special form), and product, respectively, of quadratic forms in normal variables of specified mean and covariance (standard multivariate normal by default). These functions are primarily for empirical verification of the analytic results provided in this package.

Usage

rafr(nit $=1000 \mathrm{~L}, \mathrm{~A}, \mathrm{~B}, \mathrm{p}=1, \mathrm{q}=\mathrm{p}, \mathrm{mu}$, Sigma, use_cpp $=$ TRUE)
$\operatorname{rqfmr}($ nit $=1000 \mathrm{~L}, \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{p}=1, \mathrm{q}=\mathrm{p} / 2, \mathrm{r}=\mathrm{q}, \mathrm{mu}$, Sigma, use_cpp $=$ TRUE)
rafp(nit $=1000 \mathrm{~L}, \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{p}=1, \mathrm{q}=1, \mathrm{r}=1$, mu, Sigma, use_cpp = TRUE)

Arguments

nit \quad Number of iteration or sample size. Should be an integer-alike of length 1.
A, B, D Argument matrices (see "Details"). Assumed to be square matrices of the same order. When missing, set to the identity matrix. At least one of these must be specified.
p, q, r Exponents for A, B, D, respectively (see "Details"). Assumed to be numeric of length 1 each. See "Details" for default values.
mu Mean vector $\boldsymbol{\mu}$ for \mathbf{x}. Default zero vector.
Sigma Covariance matrix $\boldsymbol{\Sigma}$ for \mathbf{x}. Default identity matrix. mu and Sigma are assumed to be of the same order as the argument matrices.
use_cpp Logical to specify whether an C++ version is called or not. TRUE by default.

Details

These functions generate a random sample of $\frac{\left(\mathbf{x}^{T} \mathbf{A x}\right)^{p}}{\left(\mathbf{x}^{T} \mathbf{B x}\right)^{q}}(\mathrm{rqfr}()), \frac{\left(\mathbf{x}^{T} \mathbf{A x}\right)^{p}}{\left(\mathbf{x}^{T} \mathbf{B x}\right)^{q}\left(\mathbf{x}^{T} \mathbf{D x}\right)^{r}}(\mathrm{rqfmr}())$, and $\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)^{p}\left(\mathbf{x}^{T} \mathbf{B x}\right)^{q}\left(\mathbf{x}^{T} \mathbf{D} \mathbf{x}\right)^{r}(\operatorname{rqfp}())$, where $\mathbf{x} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. (Internally, $\operatorname{rqfr}()$ and rqfmr() just call $r q f p()$ with negative exponents.)
When only one of p and q is provided in $r q f r()$, the other (missing) one is set to the same value.
In $r q f m r(), q$ and r are set to $p / 2$ when both missing, and set to the same value when only one is missing. When p is missing, this is set to be $q+r$. If unsure, specify all these explicitly.
In $r q f p(), p, q$ and r are 1 by default, provided that the corresponding argument matrices are given. If both an argument matrix and its exponent (e.g., D and r) are missing, the exponent is set to 0 so that the factor be unity.

Value

Numeric vector of length nit.

See Also

$q f r m$ and $q f p m$ for analytic moments
dqfr for analytic distribution-related functions for simple ratios

Examples

```
p<- 4
A <- diag(1:p)
B <- diag(p:1)
D <- diag(sqrt(1:p))
## By default B = I, p = q = 1;
## i.e., ( }\mp@subsup{x}{}{\wedge}\top A x) / ( (x^T x), x ~ N(0, I)
rgfr(5, A)
## ( (x^\top A x) / (( (x^\top B x) (x^\top D x ) )^(1/2), x ~ N(0, I)
rqfmr(5, A, B, D, 1, 1/2, 1/2)
```

```
## (x^\top A x), x ~ N(0, I)
rqfp(5, A)
## (x^\top A x) ( }\mp@subsup{x}{}{\wedge}\=Bx),x~N(0, I
rqfp(5, A, B)
## (x^T A x) (x^T B x) (x^\top D x), x ~ N(0, I)
rgfp(5, A, B, D)
## Example with non-standard normal
mu <- 1:p / p
Sigma <- matrix(0.5, p, p)
diag(Sigma) <- 1
rqfr(5, A, mu = 1:p / p, Sigma = Sigma)
## Compare Monte Carlo sample and analytic expression
set.seed(3)
mcres <- rqfr(1000, A, p = 2)
mean(mcres)
(anres <- qfrm(A, p = 2))
stats::t.test(mcres, mu = anres$statistic)
```

sum_counterdiag Summing up counter-diagonal elements

Description

sum_counterdiag() sums up counter-diagonal elements of a square matrix from the upper-left; i.e., $\mathrm{c}\left(\mathrm{X}[1,1], \mathrm{X}[1,2]+\mathrm{X}[2,1], \mathrm{X}[1,3]+\mathrm{X}[2,2]+\mathrm{X}[3,1], \ldots\right.$) (or a sequence of $\sum_{i=1}^{k} x_{i, k-i+1}$ for $k=1,2, \ldots$). sum_counterdiag3D() does a comparable in a 3D cubic array. No check is done on the structure of X.

Usage

sum_counterdiag(X)
sum_counterdiag3D(X)

Arguments

X
Square matrix or cubic array
S_fromUL Make covariance matrix from eigenstructure

Description

This is an internal utility function to make covariance matrix from eigenvectors and eigenvalues. Symmetry is assumed for the original matrix.

Usage

S_fromUL(evec, evalues)

Arguments

evec	Matrix whose columns are eigenvectors
evalues	Vector of eigenvalues

tr Matrix trace function

Description

This is an internal function. No check is done on the structure of X .

Usage

$\operatorname{tr}(X)$

Arguments

X
Square matrix whose trace is to be calculated

Index

```
a1_pk, 6
ABDpqr_int_E (p_A1B1_Ed), 31
ABpq_int_E (p_A1B1_Ed), 31
all.equal, 26
Ap_int_E (p_A1B1_Ed), 31
ApBDqr_int_Ec (p_A1B1_Ed), 31
ApBDqr_int_Ed (p_A1B1_Ed), 31
ApBDqr_int_El (p_A1B1_Ed), 31
ApBDqr_npi_Ec (p_A1B1_Ed), 31
ApBDqr_npi_Ed (p_A1B1_Ed), 31
ApBDqr_npi_El (p_A1B1_Ed), 31
ApBIqr_int_cEd (p_A1B1_Ed), 31
ApBIqr_int_nEc (p_A1B1_Ed), 31
ApBIqr_int_nEd (p_A1B1_Ed), 31
ApBIqr_int_nEl (p_A1B1_Ed), 31
ApBIqr_npi_Ec (p_A1B1_Ed), 31
ApBIqr_npi_Ed (p_A1B1_Ed), 31
ApBIqr_npi_El (p_A1B1_Ed), 31
ApBq_int_E (p_A1B1_Ed), 31
ApBq_npi_Ec (p_A1B1_Ed), 31
ApBq_npi_Ed (p_A1B1_Ed), 31
ApBq_npi_El (p_A1B1_Ed), 31
ApIq_int_cE (p_A1B1_Ed), 31
ApIq_int_nE (p_A1B1_Ed), 31
ApIq_npi_cE (p_A1B1_Ed), 31
ApIq_npi_nEc (p_A1B1_Ed), 31
ApIq_npi_nEd (p_A1B1_Ed), 31
ApIq_npi_nEl (p_A1B1_Ed), 31
d1_i, 3, 7, 10, 11, 13, 14, 19, 20, 24, 28, 41,
    46, 47, 53-55
d2_1j(d2_ij), 9
d2_1j_m(d2_ij), 9
d2_1j_v (d2_ij), 9
d2_ij, 3, 7, 8, 9, 14, 19, 46, 53, 54
d2_ij_m(d2_ij), 9
d2_ij_v(d2_ij), 9
d2_pj(d2_ij), 9
d2_pj_m(d2_ij), 9
d2_pj_v (d2_ij), 9
```

d3_ijk, 3, 7, 8, 12, 12, 19, 46, 53, 54
d3_ijk_m (d3_ijk), 12
d3_ijk_v (d3_ijk), 12
d3_pjk (d3_ijk), 12
d3_pjk_m (d3_ijk), 12
d3_pjk_v (d3_ijk), 12
d_A1I1_Ed (p_A1B1_Ed), 31
d_broda_Ed (p_A1B1_Ed), 31
d_butler_Ed (p_A1B1_Ed), 31
davies, 20, 21
dqfr, 3, 5, 15, 59
dqfr_A1I1 (dqfr), 15
dqfr_broda (dqfr), 15
dqfr_butler (dqfr), 15
dtil1_i (d1_i), 7
dtil1_i_m(d1_i), 7
dtil1_i_v(d1_i), 7
dtil2_1q_m (dtil2_pq), 23
dtil2_1q_v (dtil2_pq), 23
dtil2_pq, 3, 8, 12, 14, 23
dtil2_pq_m (dtil2_pq), 23
dtil2_pq_v (dtil2_pq), 23
dtil3_pqr (dtil2_pq), 23
dtil3_pqr_m (dtil2_pq), 23
dtil3_pqr_v (dtil2_pq), 23
gen_eig (range_qfr), 57
gsl_wrap (hyperg_1F1_vec_b), 25
h2_ij (d2_ij), 9
h2_ij_m (d2_ij), 9
h2_ij_v (d2_ij), 9
h3_ijk (d3_ijk), 12
h3_ijk_m(d3_ijk), 12
h3_ijk_v (d3_ijk), 12
hgs, 8, 24
hgs_1d (hgs), 24
hgs_2d (hgs), 24
hgs_3d (hgs), 24
hhat2_1j(d2_ij), 9

```
hhat2_1j_m(d2_ij),9
hhat2_1j_v(d2_ij),9
hhat2_pj(d2_ij), 9
hhat2_pj_m(d2_ij), 9
hhat2_pj_v(d2_ij), 9
hhat3_pjk(d3_ijk), 12
hhat3_pjk_m(d3_ijk), 12
hhat3_pjk_v (d3_ijk), 12
htil2_1j(d2_ij), 9
htil2_1j_m(d2_ij), 9
htil2_1j_v(d2_ij),9
htil2_pj(d2_ij), 9
htil2_pj_m(d2_ij), 9
htil2_pj_v(d2_ij), 9
htil3_pjk(d3_ijk), 12
htil3_pjk_m(d3_ijk), 12
htil3_pjk_v (d3_ijk),12
hyperg_1F1_vec_b, 25
hyperg_2F1_mat_a_vec_c
    (hyperg_1F1_vec_b), 25
imhof, 20, 21
IpBDqr_gen_Ec (p_A1B1_Ed), 31
IpBDqr_gen_Ed (p_A1B1_Ed), 31
IpBDqr_gen_El (p_A1B1_Ed), 31
is_diagonal,26
iseq, 26
KiK,27
legend, 30
methods.qfrm, 29
methods.qfrm(print.qfrm), 29
new_qfpm (new_qfrm), 27
new_qfrm, 27, 30
p_A1B1_Ec (p_A1B1_Ed), 31
p_A1B1_Ed, 31
p_A1B1_El (p_A1B1_Ed), 31
p_butler_Ed(p_A1B1_Ed), 31
p_imhof_Ed (p_A1B1_Ed), 31
plot.default, 30
plot.qfrm(print.qfrm), 29
pqfr, 3
pqfr (dqfr), 15
pqfr_A1B1 (dqfr), 15
pqfr_butler (dqfr), 15
pqfr_davies(dqfr), 15
pqfr_imhof(dqfr),15
print.qfpm(print.qfrm), 29
print.qfrm,29
qfm_Ap_int (qfpm),48
qfmrm, 3, 5, 8, 12, 14, 27, 29, 43, 50, 56
qfmrm_ApBDqr_int (qfmrm), 43
qfmrm_ApBDqr_npi (qfmrm),43
qfmrm_ApBIqr_int (qfmrm),43
qfmrm_ApBIqr_npi (qfmrm),43
qfmrm_IpBDqr_gen (qfmrm), 43
qfpm, 3, 5, 8, 24, 27, 29, 30, 48, 50, 59
qfpm_ABDpqr_int (qfpm), 48
qfpm_ABpq_int (qfpm),48
qfratio-package, 2
qfrm, 3, 5, 8,12,18-20, 27, 29, 41, 46, 47, 50,
    51,55,59
qfrm_ApBq_int (qfrm),51
qfrm_ApBq_npi (qfrm),51
qfrm_ApIq_int, 6,30
qfrm_ApIq_int (qfrm),51
qfrm_ApIq_npi (qfrm),51
qfrm_cpp (p_A1B1_Ed), 31
qqfr, 3
qqfr (dqfr), 15
range_qfr, 57
rqfmr (rqfr), 58
rqfp (rqfr), 58
rqfpE (p_A1B1_Ed), 31
rqfr, 5, 22,58
S_fromUL, 61
sum_counterdiag,60
sum_counterdiag3D (sum_counterdiag), 60
tr,61
uniroot, 20
```

