| Type: | Package | 
| Title: | Assembling Data Sets for Non-Linear Mixed Effects Modeling | 
| Version: | 0.0.1 | 
| Maintainer: | Mario Gonzalez Sales <mario@modelinggreatsolutions.com> | 
| Description: | To Simplify the time consuming and error prone task of assembling complex data sets for non-linear mixed effects modeling. Users are able to select from different absorption processes such as zero and first order, or a combination of both. Furthermore, data sets containing data from several entities, responses, and covariates can be simultaneously assembled. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Imports: | utils, lubridate, stats, readxl, reshape, reshape2, sqldf, kableExtra, plyr, dplyr, tidyverse, readr | 
| Suggests: | rmarkdown, knitr, devtools, testthat | 
| RoxygenNote: | 6.1.1 | 
| URL: | https://github.com/syneoshealth/puzzle | 
| BugReports: | https://github.com/syneoshealth/puzzle/issues | 
| NeedsCompilation: | no | 
| Packaged: | 2019-11-22 11:26:50 UTC; Juan | 
| Author: | Olivier Barriere [aut], Mario Gonzalez Sales [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2019-11-28 16:10:02 UTC | 
A covariate data set.
Description
A dataset containing covariate information.
Usage
df_cov
Format
A tibble with 12 rows and 4 variables:
- ID
 Individual
- TIME
 Time, in hours
- VARIABLE
 Variable
- VALUE
 Value of the variable
Starting covariate data set.
Description
A dataset containing covariate information.
Usage
df_cov_start
Format
A data frame with 4 rows and 3 variables:
- ID
 Individual
- VARIABLE
 Variable
- VALUE
 Value of the variable
A covariate data set to be used with time dependent covariates.
Description
A dataset containing time dependent covariates.
Usage
df_cov_time_dependent_start
Format
A data frame with 6 rows and 4 variables:
- ID
 Individual
- VARIABLE
 Variable
- VALUE
 Value of the variable
- TIME
 Time, in hours
A dose data set.
Description
A dataset containing dose information.
Usage
df_dose
Format
A data frame with 12 rows and 3 variables:
- ID
 Individual
- TIME
 Time, in weeks
- AMT
 Dose, in mg
A dose data set including datetimes.
Description
A dataset containing dose information in datetime format.
Usage
df_dose_datetime
Format
A data frame with 5 rows and 12 variables:
- ID
 Individual
- TRT
 Treatment label
- DOSE
 Dose, in mg
- PERIOD
 Period
- DAY
 Day of adminsitration
- AMT
 Dose, in mg
- DATETIME
 Dta ein datetime format
- TIMEPOINT
 Timepoint
- COHORT
 Cohort
- FORM
 Drug form
- TREATMENT
 Treatment
- FOOD
 Food status
A dose data set to be used with EVID=4.
Description
A dataset containing dosing information.
Usage
df_dose_evid4
Format
A data frame with 418 rows and 10 variables:
- ID
 Individual
- PERIOD
 Period
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
- AMT
 Dose, in mg
- TRT
 Treatment label
- DAY
 Day of adminsitration
- SEQUENCE
 Sequence
- TRT2
 Treatment
- EVID
 Evid value
A dose data set to be used with optional columns.
Description
A dataset containing dosing information.
Usage
df_dose_optional_columns
Format
A data frame with 4 rows and 6 variables:
- ID
 Individual
- TIME
 Time, in hours
- AMT
 Dose, in mg
- OCC
 Occasion
- TIMEPOINT
 Timepoint
- TRT
 Treatment
A dose data set example.
Description
A dataset containing dosing information.
Usage
df_dose_start
Format
A data frame with 4 rows and 3 variables:
- ID
 Individual
- TIME
 Time, in hours
- AMT
 Dose, in mg
An extra times data set example.
Description
A dataset containing extra times.
Usage
df_extra_times
Format
A data frame with 251 rows and 1 variable:
- TIME
 Time, in hours
An extra times data set example with datetime format.
Description
A dataset containing extra times in datetime format.
Usage
df_extra_times_datetime
Format
A data frame with 20 rows and 1 variable:
- ID
 Individual
- DATETIME
 Datetime
- TIMEPOINT
 Timepoint
An extra times metabolite data set to be used with EVID=4.
Description
A dataset containing extra times for an hypothetical metabolite.
Usage
df_extra_times_metabolite_evid4
Format
A data frame with 770 rows and 3 variable:
- PERIOD
 Period
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
An extra times parent data set to be used with EVID=4.
Description
A dataset containing extra times for an hypothetical parent drug.
Usage
df_extra_times_parent_evid4
Format
A data frame with 770 rows and 3 variable:
- PERIOD
 Period
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
An extra times data set example.
Description
A dataset containing extra times.
Usage
df_extra_times_time
Format
A data frame with 1040 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- TIMEPOINT
 Timepoint
A pharmacokinetic metabolite data set to be used with EVID=4.
Description
A dataset containing pharmacokinetic information for an hypothetical metabolite.
Usage
df_metabolite_evid4
Format
A data frame with 1359 rows and 7 variables:
- ID
 Individual
- PERIOD
 Period
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
- DV
 Drug concentration, in mg/L
- TIMEDAY
 Timeday
- DAY
 Day of adminsitration
A pharmacokinetic parent data set to be used with EVID=4.
Description
A dataset containing pharmacokinetic information for an hypothetical parent drug.
Usage
df_parent_evid4
Format
A data frame with 1359 rows and 7 variables:
- ID
 Individual
- PERIOD
 Period
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
- DV
 Drug concentration, in mg/L
- TIMEDAY
 Timeday
- DAY
 Day of adminsitration
An starting pharmacoynamic data set example.
Description
A dataset containing pharmacodynamic observations.
Usage
df_pd_start
Format
A tibble with 6 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Response, ng/mL
A pharmacokinetic data set.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk
Format
A tibble with 132 rows and 4 variable:
- ID
 Individual
- TIMEPOINT
 Timepoint
- TIME
 Time, in hours
- DV
 Drug concentration, ng/mL
A pharmacokinetic data set example in datetime format.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_datetime
Format
A data frame with 65 rows and 7 variable:
- ID
 Individual
- DV
 Response, ng/mL
- DATETIME
 Datetime
- TIMEPOINT
 Timepoint
- DAY
 Day
- PERIOD
 Period
- BLQ
 I a BLQ?
- LLOQ
 Lower limit of quantification, ng/mL
A pharmacokinetic data set of metabolite data.
Description
A dataset containing pharmacokinetic information for an hypothetical metabolite.
Usage
df_pk_metabolite
Format
A data frame with 10 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Drug concentration, ng/mL
A pharmacokinetic data set to be used with optional columns.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_optional_columns
Format
A data frame with 12 rows and 5 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Drug concentration, ng/mL
- OCC
 Occasion
- TIMEPOINT
 Timepoint
A pharmacokinetic data set for an hypothetical parent drug.
Description
A dataset containing pharmacokinetic information.
Usage
df_pk_parent
Format
A data frame with 12 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Drug concentration, ng/mL
A pharmacokinetic data set example.
Description
A dataset containing pharmacokinetic information.
A dataset containing pharmacokinetic information.
Usage
df_pk_start
df_pk_start
Format
A tibble with 12 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Response, ng/mL
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 1.
Usage
df_response1
Format
A data frame with 6 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Response, ng/mL
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 2.
Usage
df_response2
Format
A data frame with 6 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Response, seconds
A pharmacodynamic data set.
Description
A dataset containing pharmacodynamic information for response 3.
Usage
df_response3
Format
A data frame with 6 rows and 3 variable:
- ID
 Individual
- TIME
 Time, in hours
- DV
 Response, in hours
puzzle
Description
Build pharmacometric data sets from basic tabulated files
Usage
puzzle(directory = NULL, order, coercion = list(name = NULL, sep =
  ","), optionalcolumns = NULL, pk = list(name = NULL, data = NULL),
  dose = list(name = NULL, data = NULL), cov = list(name = NULL, data =
  NULL), pd = list(name = NULL, data = NULL), extratimes = list(name =
  NULL, data = NULL), nm = list(name = NULL), fillcolumns = NULL,
  nocoercioncolumns = NULL, norepeatcolumns = NULL, initialindex = 0,
  na.strings = "N/A", arrange = "ID,TIME,CMT,desc(EVID)",
  datetimeformat = "%Y-%m-%d %H:%M:%S", timeunits = "hours",
  timezone = Sys.timezone(), ignore = "C", missingvalues = ".",
  parallel = TRUE, verbose = FALSE, username = NULL)
Arguments
directory | 
 path to your directory  | 
order | 
 define the absorption order, can be 0, 1, c(0,1), or c(1,1)  | 
coercion | 
 define name for coercion file  | 
optionalcolumns | 
 define optional columns  | 
pk | 
 define the required file containing the pk information. It can be a .csv or an .xlsx file  | 
dose | 
 define the required file containing the dose information. It can be a .csv, an .xlsx file or an R object.  | 
cov | 
 define the optional file containing the covariate information. It can be a .csv, an .xlsx file or an R object.  | 
pd | 
 define the optional file containing the pd information. It can be a .csv, or a .xlsx file.  | 
extratimes | 
 define the optional file containing the additional times. It can be a .csv, or a .xlsx file.  | 
nm | 
 name of output file generated by puzzle  | 
fillcolumns | 
 define columns to be filled  | 
nocoercioncolumns | 
 define columns to be dropped from the coercion file  | 
norepeatcolumns | 
 define columns not to be repeated  | 
initialindex | 
 define the lower category of categorical covariates  | 
na.strings | 
 define value for na  | 
arrange | 
 define how the columns should be arranged  | 
datetimeformat | 
 define format for date times  | 
timeunits | 
 define time units if needed  | 
timezone | 
 define timezone  | 
ignore | 
 define ignore value  | 
missingvalues | 
 define missing value  | 
parallel | 
 define parallel zero + first order absorption  | 
verbose | 
 define verbose  | 
username | 
 define person performing the assembling  | 
Value
a pharmacometrics ready data set
Examples
## Not run: 
nm = list(pk = list(parent=as.data.frame(puzzle::df_pk_start)),
          dose=as.data.frame(puzzle::df_dose_start), 
          cov=as.data.frame(puzzle::df_cov_start))
puzzle(directory=file.path(tempdir()), 
       order=c(0), 
       pk=list(data=nm$pk), 
       dose=list(data=nm$dose), 
       cov=list(data=nm$cov))
## End(Not run)