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Abstract

The R package povmap is designed to facilitate the production of small area estimates
of means and poverty headcount rates. It adds several new features to the emdi package.
These include new options for incorporating survey weights, ex-post benchmarking of
estimates, two additional transformations, several new convenient functions to assist with
reporting results, and a wrapper function to facilitate access from Stata.
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1. Introduction
The povmap package adds new features to the emdi package (Kreutzmann et al. (2019))
that are particularly appropriate for estimating headcount poverty rates and means. The
name of the package is taken from the C-based Povmap software frequently used to generate
poverty maps (Zhao (2006)). This vignette provides an overview of the additional features
provided by povmap. The package adds two notable new features to the emdi package. The
first is the ability to incorporate sample weights through the nlme package, which enables
the use of weights when undertaking data-driven transformations. While initial explorations
suggest that using the two types of weights give similar results, more exploration and inves-
tigation is needed to fully explore the use of nlme weights in the context of Empirical Best
Predictor (EBP) models. The second main new feature is the incorporation of benchmark-
ing. In response to the need for benchmarking in small area estimation, the ebp() function
now includes additional arguments (benchmark, benchmark_level, and benchmark_type).
These additions allow users to address both external and internal benchmarking problems
for the mean and the head count ratio. Benchmarking, if selected, is also applied in the
parametric bootstrap procedure used to estimate Mean Squared Error. Two additional op-
tions are provided to transform the dependent variable, in order to better meet the normality
assumptions of the underlying model. Finally, several minor changes and functionalities are
introduced that can be highly beneficial for practitioners, including several function to assist
with reporting results and a convenient wrapper for Stata users.

2. Survey weights - new options
The standard version of the EBP assumes non-informative sampling, which means that the
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inclusion probability of the sample is not linked to the outcome variable of interest. In most
practical applications, informative sampling is present, and it is important to allow for weights
when estimating the EBP model. In the emdi package, the argument weights gives users
the possibility to include weights. The method of Guadarrama et al. (2018) is used and is
implemented in the R package emdi (Skarke et al. 2023).

2.1. Survey weights with the povmap package

The povmap package offers, in addition to the methodology of Guadarrama et al. (2018),
the possibility to adjust for informative sampling via the weights argument in the nlme
package (Pinheiro et al. 2015). The well-known nlme package allows the estimation of linear
mixed models via the function lme and is used in both the emdi and povmap package for the
estimation of EBP models, which are special cases of a linear mixed model. The weights
argument in the lme command provides an alternative method to incorporate survey weights
to adjust for informative sampling. The povmap package now allows users to include weights
via the lme function. There are two different possibilities to use the nlme package in this
context: (1) to include weights when estimating the model parameters for the EBP (cf. step
2 in Kreutzmann et al. (2019) on page 7) or (2) when using data-driven transformations,
using the weights both to select the optimal transformation parameter and for estimating
the model (cf. step 1 in Kreutzmann et al. (2019) on page 7). This selection is now enabled
with the argument weights_type in the povmap package. The default are the inclusion of
weights following Guadarrama et al. (2018) ("Guadarrama"). If "nlme" is selected, weights
are included within the lme function for estimating the linear-mixed model for the EBP. If
"nlme_lambda" is selected, weights are included both when estimating the linear mixed model
and when estimating the data-driven parameter for the transformation. In both cases, each
residual is assumed to have variance equal to the inverse of the weight for that observation,
so that each observation is weighted using its specified weight.
For all three weight options, the estimated shrinkage factor γiw takes the weights into account,
using the formula:

γiw = σ̂2
u

σ̂2
u + σ̂2

ε δ
2
iw
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δ2
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j∈iw
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u and σ̂2

ε are the estimated variance components of the area effect and idiosyncratic
error term. wj is the weight assigned to unit j located in target area i. When no weights are
specified, wj = 1 for all units j, and this reduces to:
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Where Ni is the number of units in target area i. The main advantage of the nmle-type
integration of informative sampling as implemented in the povmap package is that it is com-
patible with all transformations. In contrast, the version with the "Guadarrama"-weights is
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only compatible with no transformation or the log transformation. A second difference be-
tween the methods is that when using nlme weights, the variance component estimates σ̂2

u

and σ̂2
ε are estimated using a weighted linear mixed model.

2.2. Functionality

Model estimation

To demonstrate the functionalities of the packages we show all three types of weights. First,
load the data.

R> library("povmap")
R> # Load sample data set
R> data("eusilcA_smp")
R> data('eusilcA_pop')

For comparison, we will first show the Guadarrama et al. (2018) informative sampling under
the log transformation and also perform the nlme-version with log transformation.

R> emdi_model_Guadarrama <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district", weights = "weight",
+ weights_type = "Guadarrama", transformation = "log", na.rm = TRUE
+ )

R> emdi_model_nlme_log <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district", weights = "weight",
+ weights_type = "nlme", transformation = "log", na.rm = TRUE
+ )

We further want to compare the two nlme-versions under the box-cox transformation. weights_type
"Guadarrama" can only be selected with log and no transformation. Thus, under the Box-Cox
transformation, only the weights_type "nlme" or "nlme_lambda" is possible.

R> emdi_model_nlme_bc <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
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+ smp_data = eusilcA_smp, smp_domains = "district",
+ weights = "weight", weights_type = "nlme", na.rm = TRUE
+ )

R> emdi_model_nlme_lambda <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ weights = "weight", weights_type = "nlme_lambda", na.rm = TRUE
+ )

Estimation results

The results can be called with the estimator function as in emdi.

R> head(estimators(emdi_model_Guadarrama, indicator = "Mean"))

Domain Mean
1 Eisenstadt-Umgebung 30926.73
2 Eisenstadt (Stadt) 94261.32
3 Güssing 17008.43
4 Jennersdorf 13281.90
5 Mattersburg 21830.83
6 Neusiedl am See 19492.90

R> head(estimators(emdi_model_nlme_log, indicator = "Mean"))

Domain Mean
1 Eisenstadt-Umgebung 31071.60
2 Eisenstadt (Stadt) 98082.34
3 Güssing 16990.86
4 Jennersdorf 13263.20
5 Mattersburg 21922.16
6 Neusiedl am See 19443.56

A comparison between the two different approaches to weighting is possible under the log
transformation. In the example here, the two differ only very slightly with a median relative
bias of 0.34%.
And now the results under box Cox transformation:

R> head(estimators(emdi_model_nlme_bc, indicator = "Mean"))

Domain Mean
1 Eisenstadt-Umgebung 28253.88
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2 Eisenstadt (Stadt) 55696.54
3 Güssing 17192.22
4 Jennersdorf 13106.49
5 Mattersburg 21593.67
6 Neusiedl am See 19083.43

R> head(estimators(emdi_model_nlme_lambda, indicator = "Mean"))

Domain Mean
1 Eisenstadt-Umgebung 28252.67
2 Eisenstadt (Stadt) 55547.81
3 Güssing 17200.02
4 Jennersdorf 13098.56
5 Mattersburg 21603.73
6 Neusiedl am See 19082.95

A more detailed investigation of which specification is to be recommended requires extensive
simulation studies. Nevertheless, the results differ only slightly, which is reflected in a low
median of the relative bias of 0.05%.

3. Benchmarking
In small area estimation, the model-based small area estimates need not match the direct
survey estimate for a higher area. This can be concerning if the sample size for the higher
area is large enough that the direct estimate is considered reliable and has official status. To
address these issues, benchmarking is used, which involves calibrating individual area-level
estimates so that they aggregate to match the direct estimates for a higher area.
There are two types of benchmarking problems: external and internal. External bench-
marking calibrates survey estimates to match estimates from external data sources. Internal
benchmarking involves calibrating small area estimates to higher-level aggregates, such as
regional or national totals obtained from the same survey.
Until now, benchmarking has been offered in the emdi package for the fh() function. The
function ebp() now includes the additional arguments benchmark to enter an external bench-
mark value, benchmark_level to set the level for benchmarking, and benchmark_type to
specify the type of benchmarking and benchmark_weights to allow users to specify weights
to calculate benchmarking that differ from the survey weights.

3.1. Methodology

The idea of benchmarking is that the aggregated small area estimates from the EBP, weighted
by population, should sum up to estimates of a higher regional level that are assumed to be
reliable (Datta et al. 2011; Bell et al. 2013; Pfeffermann et al. 2014). If this value is one global
one (τ) it follows

D∑
i=1

ξiÎ
bench
i = τ,
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where ξi stands for the share of the population size of each area in the total population size
(Ni/N). This formula changes to ∑

i∈k
ξkiÎ

bench
i = τk,

if there are k = 1, ...,K higher level domains for benchmarking to. Therefore, K values for
benchmarking (τk) are needed and ξki stands for the share of the population size of each area
in k (Ni/Nk). If population weights are provided as an argument in the ebp() function, the
previously described formula will be modified. In this case, the value of ξki is calculated as
the ratio of the summed population weights in i regarding k. Therefore, the resulting formula
is ξki = ∑

h∈i pwh/
∑
h∈k pwh, where pwh is the population weight of unit h.

To calculated the benchmark values, three different methods (raking, ratio, and ratio_complement)
are available within the ebp() function. For raking and the ratio methods, the estimates
are adjusted according to

Îbenchi = Îi +

∑
i∈k

ξki
ξki
φki

−1τk −∑
i∈k

ξkiÎi

 ξki
φki

.

For raking, all small area estimates (Îi) are adjusted by the same value. Therefore, φki
equals ξki. If a ratio adjustment (ratio) is selected, φki = ξki/Îi. Hence, large estimates are
corrected more than smaller ones. In the ratio case, the equation above is equivalent to the
simpler formula:

Îbenchi = Îi
τk∑

i∈k ξkiÎi

When estimating headcount poverty rates, Îbenchi is guaranteed to be positive. However,
Îbenchi can exceed 1 in cases where τk >

∑
i∈k ξkiÎi. We therefore offer the ratio_complement

method, which adjusts the estimated share of the population that is not poor by a constant
fraction to ensure consistency with the survey.

Îbenchi = 1−
(

(1− Îi)
(1− τk)∑

i∈k ξki(1− Îi)
)
)

This method also ensures that the estimated poverty rates are consistent with the survey
estimates at the higher level. While the resulting estimates can be negative, they cannot
exceed one. They therefore provide an alternative when headcount estimates using ratio
benchmarking exceed one.
Because the literature only discusses benchmarking for linear indicators, we only offer bench-
marking for the two indicators ’Mean’ and ’Head_Count’. The adjustment shown here is also
applied within the MSE bootstrap procedure, so that an MSE can also be obtained for these
adjusted estimators.
For internal benchmarking, the survey data is used to automatically calculate direct estimates
(Horvitz and Thompson 1952) for benchmarking. Therefore, survey weights must be available
and specified in the argument weights. When the benchmark weights option is not specified,
the specified survey weights are assumed to be the benchmark weights.
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3.2. Functionality

The following three arguments have been added to the ebp() function so that benchmarking
can be performed with different options.

Arguments Short description Default
benchmark For external benchmarking: benchmark value(s) NULL

(a named numeric vector, or a data.frame)
For internal benchmarking: a vector containing the name of
the indicators to be benchmarked (i.e. c("Mean","Head_Count"))

benchmark_type Type of benchmarking ratio
benchmark_level The name of the domain variable for the benchmark level, NULL

if benchmarking to multiple levels instead of globally
benchmark_weights The name of variable containing benchmark weights. This NULL

is only possible for internal benchmarking and enable users
to benchmark with weights that differ from the survey weights
(Default for internal benchmarking).

Model estimation

To demonstrate the functionalities of the package, we show examples of both external and
internal benchmarking

External benchmark An external benchmark value comes from another data source and
is considered reliable such as a value published by a statistical office. More than one value
can be specified in the ebp() function. If there are several levels in the data, values can also
be supplied for a higher level as the small area estimates level for benchmarking.

R> library("povmap")
R> # Load sample data set
R> data("eusilcA_smp")
R> data('eusilcA_pop')

The following lines add a global benchmark value for the head count ratio to the ebp()
function otherwise this call almost equals the shown example Kreutzmann et al. (2019):

R> benchmark <- mean(eusilcA_smp$eqIncome)
R> names(benchmark) <- c("Mean")

R> ebp_bench_external <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +
+ age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
+ house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, benchmark = benchmark, benchmark_type = "ratio")
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The method used here for the inclusion of benchmarking is "ratio".
To add external benchmark values a data.frame must be supplied via the benchmark argu-
ment which, in addition to the benchmark values, also contains the names of the benchmark
domains. Therefore, the additional argument benchmark_level is needed to specify the vari-
able name of the benchmark level within the sample and population data.

R> median_state <- tapply(eusilcA_smp$eqIncome, eusilcA_smp$state, median)
R> benchmark_table <- data.frame(state = names(median_state), Mean = median_state)

R> ebp_bench_external_state <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +
+ age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
+ house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, benchmark = benchmark_table, benchmark_type = "ratio",
+ benchmark_level = "state")

Internal benchmark For internal benchmarking no benchmark value has to be supplied.
The sample data itself is used to benchmark the small area estimates (i) to a global value or
(ii) to a higher geographic level than the small area level. Within the argument benchmark the
user must specify for which indicator ("Mean", "Head_Count" or both) benchmarking should
be carried out. Please note, the argument weights is needed to do internal benchmarking,
because the results are benchmarked to weighted sample means. To do benchmarking on
higher domain level the argument benchmark_level is used. The option benchmark_weights
allows the user to specify a set of weights used for benchmarking that differs from the use
of sample weights. This can be useful if, for example, the sample weights are normalized
to give each target area equal weight, in which case benchmark_weights can specify the
non-normalized original survey weights.

R> ebp_bench_internal_state <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +
+ age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
+ house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ weights = "weight", weights_type = "nlme",
+ na.rm = TRUE, benchmark = c("Mean"), benchmark_type = "ratio",
+ benchmark_level = "state", MSE = TRUE)

Estimation results

External benchmark For the global external benchmark, the following results are ob-
tained and it can be easily checked that the benchmarking leads to the correct value.
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R> head(estimators(ebp_bench_external, indicator = "Mean_bench"))

Domain Mean_bench
1 Eisenstadt-Umgebung 27804.23
2 Eisenstadt (Stadt) 54230.22
3 Güssing 17373.81
4 Jennersdorf 13546.48
5 Mattersburg 21488.25
6 Neusiedl am See 19208.26

R> sum(ebp_bench_external$ind$Mean_bench *
+ table(ebp_bench_external$framework$pop_domains_vec)/
+ ebp_bench_external$framework$N_pop)

[1] 20140.09

R> mean(eusilcA_smp$eqIncome)

[1] 20140.09

The example that benchmarks the results to a higher domain level above the small area
estimates leads to the following results.

R> head(estimators(ebp_bench_external_state, indicator = "Mean_bench"))

Domain Mean_bench
1 Eisenstadt-Umgebung 21692.41
2 Eisenstadt (Stadt) 42309.54
3 Güssing 13554.76
4 Jennersdorf 10568.75
5 Mattersburg 16764.78
6 Neusiedl am See 14985.97

Internal benchmark For the internal benchmarking at the state level the following results
are obtained.

R> head(estimators(ebp_bench_internal_state, indicator = c("Mean", "Mean_bench")))

Domain Mean Mean_bench
1 Eisenstadt-Umgebung 28253.88 22881.16
2 Eisenstadt (Stadt) 55696.54 45105.37
3 Güssing 17192.22 13922.97
4 Jennersdorf 13106.49 10614.18
5 Mattersburg 21593.67 17487.45
6 Neusiedl am See 19083.43 15454.56
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If the goal is to compare the benchmarked value to the direct estimator, ’Mean_bench’ or
’Head_Count_bench’ must be added manually to the direct estimator. This value corre-
sponds to the ’Mean’ or the ’Head_Count’.

R> emdi_direct <- direct(
+ y = "eqIncome", smp_data = eusilcA_smp, smp_domains = "district",
+ weights = "weight", var = TRUE, boot_type = "naive", B = 50, na.rm = TRUE)

R> emdi_direct$ind$Mean_bench <- emdi_direct$ind$Mean
R> emdi_direct$MSE$Mean_bench <- emdi_direct$MSE$Mean

R> compare_plot(ebp_bench_internal_state, direct = emdi_direct,
+ CV = TRUE, indicator = "Mean_bench")

Not all domains contained in the model estimation have been found in the direct
estimation. Following plots will only contain results for estimates available
in both objects.
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Figure 1: Output compare_plot()
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4. Further transformations
The linear mixed models used by povmap assume that the area effect and residual are dis-
tributed normally. However, if the dependent variable in the model is skewed, this assump-
tion will likely not hold in practice. Therefore, transformations are required to make the
distributions of the error term closer to normal. Two further transformation (the rank-order
transformation and the arcsine transformation) are incorparted to the ebp() function of the
povmap package.
The rank-order transformation is particularly useful when dealing with non-normally dis-
tributed data or outliers. By converting the original values into their corresponding ranks,
the transformed data can exhibit a more symmetrical distribution. Masaki et al. (2020) uses
the rank-order transformation to make the distributions of the error term closer to normal
and reduce discrepancies between official national poverty rates and the small area estimates.
We use the procedure included in the bestNormalize package (Peterson and Cavanaugh 2019)
to back-transform the rank-order transformation, using linear interpolation within the range
of the data and a shifted approximation to extrapolate outside the range of the data. More
research is needed to verify that this approach works well when estimating means.
Similarly, the arcsine transformation serves as a valuable tool when analysing proportions
or percentages. As proportions are bounded by 0 and 1, their distribution can deviate from
normality. The arcsine transformation, which applies the inverse sine function to the square
root of the proportion

(
y∗ij = sin−1

(√
(yij)

))
, can stabilize the variance and improve the

distributional properties of the data.
The ebp() function transform the data, calculate the linear mixed model on the transformed
data, and back-transform the data to the original scale to estimate the poverty indicators

4.1. Functionality

In the following, we will show how the additional transformations can be used in the ebp()
function of package povmap. The argument transformation is determining the chosen trans-
formation. In the povmap package following options are available:

• no, log, box.cox, dual, log.shift as in the emdi package

• ordernorm: rank-order transformation using the bestNormalize package (Peterson and
Cavanaugh 2019)

• arcsin: arcsine transformation for proportions

rank-order transformation

The ordernorm transformation can be directly applied in estimating poverty indicators from
equivalent income using the ebp() function. The distribution of equivalent income exhibits
clear outliers. The ordernorm transformation helps to better meet the normality assumptions
of the errors in the estimation process. In the following, the ebp() function is performed
without transformation and with ordernorm transformation to enable a comparison.

R> ebp_no <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
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+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, transformation = "no"
+ )

> ebp_ordernorm <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, transformation = "ordernorm"
+ )

The bestNormalize package (Peterson and Cavanaugh 2019) provides also the back-trans-
formation inv_ordernorm, which is needed to make the results interpretable at the target
level. During the execution of the transformation, a warning message is generated if any
values fall outside the original range (of the initial data) during the inverse transformation
(Peterson and Cavanaugh 2019). The warning message will indicate the number of values
that exceed the original value range.
Overall, the rank-order transformation helps to preserve the normality assumptions for the
error terms. By using functions like summary() or qqnorm(), information about the distribu-
tions of both errors can be obtained.

R> summary(ebp_no)$normality

Skewness Kurtosis Shapiro_W Shapiro_p
Error 2.40813 26.206861 0.8806197 2.841389e-36
Random_effect 1.18355 4.098958 0.8957952 2.655502e-05

R> summary(ebp_ordernorm)$normality

Skewness Kurtosis Shapiro_W Shapiro_p
Error -0.309379683 4.324697 0.9851796 2.599253e-13
Random_effect -0.004873077 2.262509 0.9859713 6.252016e-01

Comparing the two outputs, it is immediately apparent that the normal distribution assump-
tions are better fulfilled by using of the ordernorm transformation. In this case the normally
assumption on the random effects is not rejected and for the error term the skewness and
kurtosis is reduced.
The QQ-plots show the same findings.

R> qqnorm(ebp_no)
R> qqnorm(ebp_ordernorm)
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Figure 2: Output qqnorm() for using no transformation (a) and the ordernorm transformation
(b)

arcsine transformation
To demonstrate the arcsine transformation, an example percentage variable is created by
calculating the household income share relative to the maximum income.

R> eusilcA_smp$eqIncome_prop <- eusilcA_smp$eqIncome / max(eusilcA_smp$eqIncome)

Subsequently, the ebp() function is applied without and with the arcsine transformation.

R> ebp_no <- ebp(
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+ fixed = eqIncome_prop ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, transformation = "no"
+ )

R> ebp_arcsin <- ebp(
+ fixed = eqIncome_prop ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ transformation = "arcsin", na.rm = TRUE
+ )

Overall, the arcsine transformation helps to make the distribution of the error term more
normal. By using functions like summary() or qqnorm(), information about the distributions
of both errors can be obtained.

R> summary(ebp_no)$normality

Skewness Kurtosis Shapiro_W Shapiro_p
Error 2.40813 26.206861 0.8806197 2.841389e-36
Random_effect 1.18355 4.098958 0.8957952 2.655502e-05

R> summary(ebp_arcsin)$normality

Skewness Kurtosis Shapiro_W Shapiro_p
Error 1.5013512 19.258656 0.9224222 1.544219e-30
Random_effect 0.5365206 3.105318 0.9751956 1.787370e-01

All normal assumptions on the errors are rejected in all settings. However, the skewness and
kurtosis improves by applying the arcsin transformation. The QQ-plots show this graphically.

R> qqnorm(ebp_no)
R> qqnorm(ebp_arcsin)
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Figure 3: Output qqnorm() for using no transformation (a) and the arcsin transformation
(b)

5. Further arguments for the ebp function

5.1. nlme control options

The ebp() function utilizes the nlme package for estimating linear mixed models. Specifically,
the ebp() function relies on the lme function within nlme to perform its computations. The
lme function allows you to set optimization and convergence values using the nlmeControl
parameter. By modifying the control values manually, you can prevent issues such as non-
convergence within the lme function, which may occur when the maximum number of itera-
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tions (maxiter) is reached. This can occur when estimating Mean Squared Error using the
parametric bootstrap, even in cases where the model can be estimated using the sample data.
Three main arguments of the nlmeControl function are directly offered to users as additional
arguments within the ebp() function. The following table provides an overview of these three
new arguments.
Argument Description Default
nlme_maxiter Specifies the maximum number of iterations allowed for con-

vergence. If the maximum number of iterations is reached
without convergence, the algorithm stops. By adjusting this
argument, you can control the maximum iterations for the
lme() function within ebp().

1000

nlme_tolerance Sets the tolerance level for convergence. Convergence is con-
sidered achieved when the change in the estimated param-
eters falls below this tolerance value. Modifying this argu-
ment allows you to influence the convergence criteria for the
lme() function within ebp().

1e-6

nlme_opt Specifies the optimizer to be used, either ’nlminb’ or ’optim’.
Using ’optim’ can occasionally avoid false convergence errors
in the parametric bootstrap procedure.

"nlminb"

These additional arguments provide flexibility and control over the convergence behavior of
the ebp() function, ensuring that you can tailor the estimation process to your specific needs.

5.2. Rescaling of weights

The argument rescale_weights (default FALSE) gives the user the option to decide if the
weights should be scaled to a mean weight of 1 within each target domain. If rescale_weights
is TRUE, the weights for each target area sum to the sample size, corresponding to "Method
2" in Pfeffermann et al. (1998). The decision to rescale or not to rescale the weights directly
influences the results of the ebp() function. You will find an overview of weighting for linear
mixed models in Pfeffermann et al. (1998); Rabe-Hesketh and Skrondal (2006).

5.3. Ydump

The argument Ydump (default NULL) gives the user the option to output the simulated values
for the dependent variable and its components to a .csv file. The user should specify the name
of the csv file, including the .csv extension and optionally the path, in the Ydump argument.
The output file contains N*L rows, where N is the number of population units and L is the
number of replications, and six columns:

1. L, ranging from 1 to L, indicating the replication number

2. Domain, indicating the target domain

3. Simulated_Y, indicating the simulated value of the indicator after back-transformation
to the original scale

4. XBetahat, indicating the fixed effect portion of the prediction in the transformed scale.
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5. eta, the randomly drawn area effect in the transformed scale

6. epsilon, the randomly drawn idiosyncratic error term in the transformed scale

Currently this option is only available for the L replications used to generate the point esti-
mates. Even if MSE is set to TRUE, values drawn for the parametric bootstrap replications
will not be included.

6. New functionalities for a user-friendly reporting of results
To enhance user-friendliness, the povmap package offers new functionalities, particularly fo-
cusing on the head count ratio. Furthermore, reports can be generated providing information
on the estimators and their corresponding coefficient of variation (CV), as well as the un-
derlying sample and population data. Additionally, details about the linear mixed model
used (coefficients, model fit) in the ebp() object are directly outputted. A table comparing
different CVs can be created directly. This table includes the CV for the head count ratio
estimated using the ebp() function, as well as three different types of CVs for the correspond-
ing direct estimator, which arise from different approaches to MSE estimation. In addition,
a new argument has been added to the direct() function, allowing for the determination of
Horvitz-Thompson variance approximation. For a more detailed description of this method
for variance estimation, see Marhuenda et al. (2013).
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Function Description
ebp_reportdescriptives Report descriptive statistics

• CV (for head count ratio)
• basic informations on survey and population data
• national poverty rates and lines (survey vs. popula-

tion)
ebp_test_means Weighted means for the input variables (typically auxiliary

variables of the ebp) for the survey and population data
→ Comparison using test of difference

ebp_reportcoef_table User-friendly output of the coefficients of the linear mixed
regression model with standard errors

ebp_report_byrank Produce report tables that rank head count estimates either
by population of poor or the head count rates themselves in
descending order

ebp_compute_cv Estimates three different types of CVs for the head count
ratio for direct estimates:

• CV using calibrated/naive bootstrapping of the MSE
• CV using Horowitz Thompson variance estimation

technique to compute MSE
• CV using design effect adjusted naive calibrated

MSE
These functions also return the direct and model-based
headcount rates, as well as the CV for the model-based head-
count estimates .

ebp_normalityfit Table showing marginal R-square, conditional R-squared as
well as the skewness and kurtosis of the random and idiosyn-
cratic error terms

7. Stata integration of povmap
For users that are more comfortable working in Stata than R, the povmap package includes
Rpovmap.ado and Rpovmap.hlp files, which run povmap from within Stata. Rpovmap.ado
creates and executes an R script called povmap.R from within Stata. This script loads pre-
viously saved population and sample .dta files into R and calls the ebp function in povmap
with specified options. The results are saved in an Excel spreadsheet and optionally an R
object, which can be loaded in R for further analysis as desired.

Rpovmap.ado requires the following:

1. R to be installed.
2. The haven and povmap packages to be installed into R. These can be installed using

the install.packages(“haven”) and install.packages(“povmap”) commands in R.
If the devtools package is installed and loaded into memory, povmap can also be installed
directly from Github using install_github("SSA-Statistical-Team-Projects/
povmap").

3. The Rscript package to be installed in Stata, by typing ssc install rscript in Stata.
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4. The Rpovmap.ado and Rpovmap.hlp to be present in either Stata’s current directory, or
in a Stata-recognized ado directory (typing cd in Stata will show the current directory,
and typing adopath will show the location of the Stata ado directories)

Sample data eusilcA_smp.dta and euslicA.dta are included in the package. These were
created using the write_dta function in the haven package, using the following R code:

R> library(haven)
R> data("eusilcA_pop")
R> data("eusilcA_smp")
R> write_dta(data=eusilcA_pop,path="eusilcA_pop")
R> write_dta(data=eusilcA_smp,path="eusilcA_smp")

These can be used to replicate the analysis in section 2.2 of this vignette, using the following
command within Stata.

Rpovmap eqIncome gender eqsize cash self_emp unempl_ben age_ben surv_ben
sick_ben dis_ben rent fam_allow house_allow cap_inv tax_adj,
pop_data(eusilcA_pop.dta) smp_data(eusilcA_smp.dta)
smp_domains(district) pop_domains(district) weights(weight)
weights_type(Guadarrama) transformation(log) na_rm(TRUE)
saveobject(emdi_model_Guadarrama) savexls(emdi_model_Guadarrama.xlsx)

This command produces two output files in the current folder: emdi_model_Guadarrama.xlsx
and the saved R object emdi_model_Guadarrama, which contains the emdi object ebp_results.
The files can also be saved in a directory specified by the user as part of the string in the
savexls and saveobject options.

The saveobject option is recommended to allow for further analysis from within R. For
example, after using the setwd() function to set the current directory in R to the folder in
which emdi_model_Guadarrama was saved, executing:

R> load("emdi_model_Guadarrama")
R> ebp_reportcoef_table(ebp_results)

displays model coefficients in R.

To analyze the results in Stata, use the import excel command to load the saved estimates.

. import excel using "emdi_model_Guadarrama", sheet("Point Estimators")
firstrow clear
. list Domain Mean in 1/5, clean noobs

Domain Mean
Eisenstadt-Umgebung 30926.729
Eisenstadt (Stadt) 94261.315
Güssing 17008.432
Jennersdorf 13281.905
Mattersburg 21830.831
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Rpovmap treats all labeled variables in the sample and population data as factor variables,
using the as_factor function in the haven package. In this example, the gender variable
takes on values of 1 or 2 i the data, but is appropriately treated as a factor variable instead
of a continuous variable in model estimation.

Typing help Rpovmap from within Stata will load the help file listing the full set of options,
which mirror those in the R povmap package.

8. Conclusion
This vignette has presented the new functionalities of the povmap package compared to
the emdi package. These functionalities include options for incorporating sample weights,
benchmarking, additional transformations, additional arguments for the ebp() function, user-
friendly output options, and a convenient wrapper for Stata users.
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