poso_simu_pop() in v1.2.5 introduced
several issues and have been revertedposo_replace_et() enables updating a
model with events from a new rxode2 event table, while accounting for
and interpolating any covariates or inter-occasion variabilityposo_time_cmin(), poso_dose_conc(),
poso_dose_auc() and poso_inter_cmin().poso_simu_pop() provides an rxode2 model using the
simulated ETA and the input dataset, with interpolation of covariates,
to make plotting easiervignette("route_of_administration") shows how to select
a route of administration for optimal dosingvignette("population_models") describes the structure
of prior population models written as model functions which can be
parsed by rxode2 and used by posologyrvignette("posologyr_user_defined_models") is renamed
vignette("classic_posologyr_models")rxode2 model functionsposo_estim_map(),
poso_estim_sir() and poso_simu_pop() failed
for models featuring a single parameter with IIV.poso_*
functions. Once the model has been parsed by rxode2() with
this package the model$posologyr gives the list needed for
poso_* functionsposo_dose_conc(),
poso_dose_auc() and poso_inter_cmin() where
the returned estimate of the target value to be optimized against was
always equal to zero.poso_time_cmin(),
poso_dose_conc(), and poso_dose_auc() now
explicitly states the consequences of setting tdm to
TRUE: which parameters are required, which parameters are
ignored, and which parameters behave differently.poso_time_cmin(),
poso_dose_conc(), and poso_dose_auc() now
return a warning if any of the input parameters are ignored.poso_dose_auc()posologyr() (as requested by CRAN)parent.frame() (as requested by CRAN)poso_estim_map(), poso_estim_sir() and
poso_estim_mcmc() can now estimate individual PK profiles
for multiple endpoints models (eg. PK-PD, parent-metabolite,
blood-CSF…), using a different residual error model for each
endpoint.poso_time_cmin(), poso_dose_conc(),
poso_dose_auc() and poso_inter_cmin() now
allow you to select the end point of interest for which you want to
optimize, provided it is defined in the model.vignette("a_priori_dosing") illustrates a priori dose
selectionvignette("a_posteriori_dosing") illustrates a
posteriori dose selection, using TDM datavignette("auc_based_dosing") shows how to select an
optimal dose for a given target AUC using data from TDMvignette("multiple_endpoints") introduces the new
multiple endpoints featureposo_time_cmin() can now estimate time needed to reach
a selected trough concentration (Cmin) using the data from TDM
directlyposo_dose_conc() can now estimate an optimal dose to
reach a target concentration following the events from TDMposo_dose_auc() can now estimate an optimal dose to
reach a target auc following the events from TDMposologyr() is now an internal function, all exported
functions take patient data and a prior model as input parametersposo_estim_map() provides an rxode2 model using MAP-EBE
and the input dataset, with interpolation of covariates, to make
plotting easierposologyr() functionposo_time_cmin(), poso_dose_auc(),
poso_dose_conc(), and poso_inter_cmin() no
longer fail for models with IOVposo_estim_sir() estimates the posterior distribution
of individual parameters by Sequential Importance Resampling (SIR). It
is roughly 25 times faster than poso_estim_mcmc() for 1000
samples.poso_estim_map() allows the estimation of the
individual parameters by adaptive MAP forecasting (cf. doi:
10.1007/s11095-020-02908-7) with adapt=TRUE.poso_simu_pop(), poso_estim_map(), and
poso_estim_sir() now support models with both
inter-individual (IIV) and inter-occasion variability (IOV).MASS:mvrnorm is replaced by
mvtnorm::rmvnorm for multivariate normal
distributions.poso_estim_map() now uses method=“L-BFGS-B” in optim
for better convergence of the algorithm.poso_inter_cmin() now uses method=“L-BFGS-B” in optim
for better convergence of the algorithm.poso_dose_conc() is the new name of
poso_dose_ctime().poso_time_cmin(),
poso_dose_auc(), poso_dose_conc(), and
poso_inter_cmin() now work with prior and posterior
distributions of ETA, and not only with point estimates (such as the
MAP).nocb parameter is added to
posologyr(). The interpolation method for time-varying
covariates can be either last observation carried forward (locf, the
RxODE default), or next observation carried backward (nocb, the NONMEM
default).vignette("uncertainty_estimates") is removed.poso_time_cmin(), poso_dose_ctime(), and
poso_dose_auc() now work for multiple dose regimen.poso_inter_cmin() allows the optimization of the
inter-dose interval for multiple dose regimen.vignette("case_study_vancomycin") illustrates AUC-based
optimal dosing, multiple dose regimen, and continuous intravenous
infusion.First public release.