Package 'planr'

April 17, 2024

Title Tools for Supply Chain Management, Demand and Supply Planning

Version 0.4.0

Descriptio	n Perform flexible and quick calculations for Demand and Supply Planning, such as pro-
jecte	d inventories and coverages, as well as replenish-
ment	plan. For any time bucket, daily, weekly or monthly, and any granularity level, prod-
uct o	r group of products.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Imports dplyr, tidyr, lubridate, magrittr, RcppRoll

URL https://github.com/nguyennico/planr

BugReports https://github.com/nguyennico/planr/issues

Depends R (>= 2.10)

LazyData true

Suggests highcharter, knitr, reactable, reactablefmtr, rmarkdown, shiny, tidyverse, sparkline, DT, DiagrammeR, networkD3, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Nicolas Nguyen [aut, cre]

Maintainer Nicolas Nguyen <nikonguyen@yahoo.fr>

Repository CRAN

Date/Publication 2024-04-17 06:10:02 UTC

R topics documented:

blueprint	•	•		•		•	•	•			•		•			•	•	•						•	•	•	•	•				2	2
blueprint_drp	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	3

blueprint

blueprint_light	4
const_dmd	4
demo_const_dmd	5
demo_in_transit	6
demo_monthly_dmd	7
drp	7
light_proj_inv	8
month_to_week	9
proj_git	10
proj_inv	10
slob	11
ssl	12
	13

Index

blueprint

blueprint

Description

This dataset contains the basic features to calculate projected inventories and coverages. And also 2 additional info: a minimum and maximum targets of stock coverage. We can apply on it the proj_inv() function, it will return calculated projected inventories and coverages as well as an analysis of the position of the projected inventories versus the minimum and maximum stocks targets.

Usage

```
data(blueprint)
```

Format

A data frame with 520 rows and 7 variables

Details

- DFU, an item
- · Period, a date
- Demand, a consumption in units
- Opening, available inventories at the beginning in units
- Supply, a Replenishment Plan in units
- Min.Cov, a Minimum Stocks Targets in number of Periods
- · Max.Cov, a Maximum Stocks Targets in number of Periods

Author(s)

blueprint_drp blueprint_drp

Description

This dataset contains the basic features to calculate a Replenishment Plan (also called DRP) and its related projected inventories and coverages. We can apply on it the drp() function, it will return the calculated Replenishment Plan and its related projected inventories and coverages.

Usage

```
data(blueprint_drp)
```

Format

A data frame with 520 rows and 9 variables

Details

- DFU, an item
- Period, a date
- Demand, a consumption in units
- Opening, available inventories at the beginning in units
- Supply, a Replenishment Plan in units
- FH, defines the Frozen and Free Horizon. It has 2 values: Frozen or Free. If Frozen : no calculation of Replenishment Plan yet, the calculation starts when the period is defined as Free. We can use this parameter to consider some defined productions plans or supplies (allocations, workorders,...) in the short-term for example.
- SSCov, the Safety Stock Coverage, expressed in number of periods
- DRPCovDur the Frequency of Supply, expressed in number of periods
- MOQ the Multiple Order Quantity, expressed in units, 1 by default or a Minimum Order Quantity

Author(s)

blueprint_light blueprint_light

Description

This dataset contains the basic features to calculate projected inventories and coverages. Just 5 features are needed for this: a DFU, a Period, a Demand, an initial Opening Inventory and a Supply Plan. We can apply on it the light_proj_inv() function, it will return calculated projected inventories and coverages.

Usage

data(blueprint_light)

Format

A data frame with 520 rows and 5 variables

Details

- DFU, an item
- Period, a date
- Demand, a consumption in units
- Opening, available inventories at the beginning in units
- Supply, a Replenishment Plan in units

Author(s)

Nicolas Nguyen <nikonguyen@yahoo.fr>

const_dmd	Calculates the Projected Inventories and Coverages as well as the
	Constrained Demand and informs a Tag about the part of the Demand
	already covered by the Opening Inventories

Description

Calculates the Projected Inventories and Coverages as well as the Constrained Demand and informs a Tag about the part of the Demand already covered by the Opening Inventories

Usage

```
const_dmd(dataset, DFU, Period, Demand, Opening, Supply)
```

Arguments

dataset	a dataframe with the demand and supply features for an item per period
DFU	name of an item, a SKU, or a node like an item x location
Period	a period of time monthly or weekly buckets for example
Demand	the quantity of an item planned to be consumed in units for a given period
Opening	the opening inventories of an item in units at the beginning of the horizon
Supply	the quantity of an item planned to be supplied in units for a given period

Value

a dataframe with the calculated Projected Inventories and Coverages as well as the Constrained Demand and a Tag informing the part of the Demand already covered by the Opening Inventories

Examples

const_dmd(dataset = demo_const_dmd, DFU, Period, Demand, Opening, Supply)

demo_const_dmd demo_const_dmd

Description

This dataset contains the basic features to calculate projected inventories and coverages. Just 5 features are needed for this: a DFU, a Period, a Demand, an initial Opening Inventory and a Supply Plan. The idea is to use this dataset to calculate a constrained demand for each Product, on top of the projected inventories & coverages. A constrained demand is a possible demand, which can be answered considering the projected inventories. Then we can apply on this dataset the const_dmd() function, it will add 2 variables : a Constrained.Demand and a Current.Stock.Available.Tag . The Constrained.Demand is the Demand which can be answered considering the projected and when it can be answered. The Current.Stock.Available.Tag informs the part of the Demand which is already covered by the Opening Inventories.

Usage

data(demo_const_dmd)

Format

A data frame with 144 rows and 5 variables

Details

- DFU, an item
- · Period, a date
- Demand, a consumption in units
- Opening, available inventories at the beginning in units
- Supply, a Replenishment Plan in units

Author(s)

Nicolas Nguyen <nikonguyen@yahoo.fr>

demo_in_transit demo_in_transit

Description

This dataset contains the detailed ETA and ETD for the current and next in transit, as well as the Transit Time for a defined DFU. ETA stands for Estimated Time of Arrival. ETD stands for Estimated Time of Departure. There are 2 types of in transit : the current in transit and the next one, not yet shipped. There are 6 variables in this dataset: a DFU, a Period, an ETA Current Goods In Transit, an ETD & ETA Next Goods In Transit, and a Transit Time. Note that the diffrence between ETD and ETA is the Transit Time. The idea is to use this dataset to project the Goods In Transit. We can apply on this dataset the proj_git() function, it will calculate the Proj.GIT which gathers the current and next In Transit quantities.

Usage

```
data(demo_in_transit)
```

Format

A data frame with 447 rows and 6 variables

Details

- DFU, a location and an item
- · Period, a date in weekly bucket format
- ETA.Current, some quantities currently in transit displayed at their ETA date in units
- ETA.Next, some quantities to be shipped, not yet in transit, displayed at their ETA date in units
- ETD.Next, some quantities to be shipped, not yet in transit, displayed at their ETD date in units
- TLT, the Transit Lead Time, expressed in weeks, represents the difference between ETA and ETD dates

Author(s)

Description

This dataset contains a set of Monthly Demand for two Products. There are 3 variables: a DFU, a Monthly Period, a Monthly Demand. The idea is to use this dataset to convert the Demand from Monthly into Weekly bucket. We can apply on this dataset the month_to_week() function, it will create a weekly bucket Period and convert the Demand from Monthly into Weekly bucket.

Usage

```
data(demo_monthly_dmd)
```

Format

A data frame with 24 rows and 3 variables

Details

- DFU, an item
- · Period, a date in monthly format
- Demand, a consumption in units

Author(s)

Nicolas Nguyen <nikonguyen@yahoo.fr>

drp

Calculates a Replenishment Plan (also called DRP : Distribution Requirement Planning) and the related Projected Inventories and Coverages

Description

Calculates a Replenishment Plan (also called DRP : Distribution Requirement Planning) and the related Projected Inventories and Coverages

Usage

drp(dataset, DFU, Period, Demand, Opening, Supply, SSCov, DRPCovDur, MOQ, FH)

Arguments

like an item x location buckets for example be consumed in units for a given period
buckets for example be consumed in units for a given period
be consumed in units for a given period
in units at the beginning of the horizon
be supplied in units for a given period
sed in number of periods
d in number of periods
essed in units, 1 by default or a multiple of a
n. It hase 2 values: Frozen or Free. If Frozen Plan yet, the calculation starts when the pe- use this parameter to consider some defined cations, workorders,) in the short-term for

Value

a dataframe with the calculated Replenishment Plan and related Projected inventories and Coverages

Examples

drp(dataset = blueprint_drp, DFU, Period, Demand, Opening, Supply, SSCov, DRPCovDur, MOQ, FH)

light proj inv	Calculates	projected	inventories	and coverages
118110_p10J_1111	Concinences	projecteu	111101100	and coverages

Description

Calculates projected inventories and coverages

Usage

```
light_proj_inv(dataset, DFU, Period, Demand, Opening, Supply)
```

Arguments

dataset	a dataframe with the demand and supply features for an item per period
DFU	name of an item, a SKU, or a node like an item x location
Period	a period of time monthly or weekly buckets for example
Demand	the quantity of an item planned to be consumed in units for a given period
Opening	the opening inventories of an item in units at the beginning of the horizon
Supply	the quantity of an item planned to be supplied in units for a given period

month_to_week

Value

a dataframe with the calculated projected inventories and coverages and the related analysis

Examples

light_proj_inv(dataset = blueprint_light, DFU, Period, Demand, Opening, Supply)

month_to_week

Convert a Demand expressed in Monthly buckets into Weekly buckets

Description

Convert a Demand expressed in Monthly buckets into Weekly buckets

Usage

month_to_week(dataset, DFU, Period, Demand)

Arguments

dataset	a dataframe with the demand in monthly bucket for each item
DFU	name of an item, a SKU, or a node like an item x location
Period	a monthly period of time that we want to convert into weekly buckets
Demand	the quantity of an item planned to be consumed in units for a given period

Value

a dataframe with the Demand expressed in weekly buckets for each item

Examples

month_to_week(dataset = demo_monthly_dmd, DFU, Period, Demand)

proj_git

Description

Calculates the projected in transit for a defined DFU

Usage

proj_git(dataset, DFU, Period, ETA.Current, ETA.Next, ETD.Next, TLT)

Arguments

dataset	a dataframe which contains the different variable below for each DFU
DFU	name of a node, which is an item x location
Period	a period of time, expressed in weekly bucket
ETA.Current	quantities currently in transit displayed at their ETA date in units
ETA.Next	quantities to be shipped, not yet in transit, displayed at their ETA date in units
ETD.Next	quantities to be shipped, not yet in transit, displayed at their ETD date in units
TLT	Transit Lead Time, expressed in weeks, represents the difference between ETA and ETD dates

Value

a dataframe with the projected in transit quantity calculated for each DFU

Examples

proj_git(dataset = demo_in_transit, DFU, Period, ETA.Current, ETA.Next, ETD.Next, TLT)

proj_inv	Calculates projected inventories and coverages and perform an anal-
	ysis vs stocks targets

Description

Calculates projected inventories and coverages and perform an analysis vs stocks targets

Usage

proj_inv(dataset, DFU, Period, Demand, Opening, Supply, Min.Cov, Max.Cov)

slob

Arguments

dataset	a dataframe with the demand and supply features for an item per period
DFU	name of an item, a SKU, or a node like an item x location
Period	a period of time monthly or weekly buckets for example
Demand	the quantity of an item planned to be consumed in units for a given period
Opening	the opening inventories of an item in units at the beginning of the horizon
Supply	the quantity of an item planned to be supplied in units for a given period
Min.Cov	minimum stocks target of an item expressed in periods
Max.Cov	maximum stocks target of an item expressed in periods

Value

a dataframe with the calculated projected inventories and coverages and the related analysis

Examples

proj_inv(dataset = blueprint, DFU, Period, Demand, Opening, Supply, Min.Cov, Max.Cov)

slob slob

Description

This dataset contains the detailed Opening Inventories for two Products. There are 4 variables: a DFU, a Period, a Demand and the breakdown of the Opening Inventories by expiry date or minimum Remaining Shelf Life for use. The idea is to use this dataset to calculate the Short Shelf Life quantities, called here SSL Qty. We can apply on this dataset the ssl() function, it will calculate a SSL Qty field.

Usage

data(slob)

Format

A data frame with 44 rows and 4 variables

Details

- DFU, an item
- Period, a date in monthly format
- Demand, a consumption in units
- Opening, the breakdown of the opening inventories in units by expiry date

Author(s)

ssl

Calculates the short shelf life of an opening inventories, also called obsolescence risks

Description

Calculates the short shelf life of an opening inventories, also called obsolescence risks

Usage

ssl(dataset, DFU, Period, Demand, Opening)

Arguments

dataset	a dataframe with the demand in weekly or monthly bucket for each item
DFU	name of an item, a SKU, or a node like an item x location
Period	a period of time, expressed in monthly or weekly bucket
Demand	the quantity of an item planned to be consumed in units for a given period
Opening	the breakdown of the opening inventories by expiry date, or percentage of min- imum remaining shelflife for use

Value

a dataframe with the SSL.Qty related to the Opening Inventories of each item

Examples

ssl(dataset = slob, DFU, Period, Demand, Opening)

Index

blueprint, 2 blueprint_drp, 3 blueprint_light, 4 const_dmd, 4 demo_const_dmd, 5 demo_in_transit, 6 demo_monthly_dmd, 7 drp, 7 light_proj_inv, 8 month_to_week, 9 proj_git, 10 proj_inv, 10 slob, 11 ssl, 12