--- title: Sparse regression with paired covariates output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{vignette} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r,include=FALSE} knitr::opts_chunk$set(echo=TRUE,eval=FALSE) ``` The R package `palasso` implements the paired lasso. ## Installation Installing the current release from [CRAN](https://CRAN.R-project.org/package=palasso): ```{r,eval=FALSE} install.packages("palasso") ``` Installing the latest development version from [GitHub](https://github.com/rauschenberger/palasso): ```{r,eval=FALSE} #install.packages("devtools") library(devtools) install_github("rauschenberger/palasso") ``` ## Initialisation We use [glmnet](https://CRAN.R-project.org/package=glmnet) for the *standard lasso*, and [palasso](https://CRAN.R-project.org/package=palasso) for the *paired lasso*. Loading and attaching the packages: ```{r, message=FALSE} library(glmnet) library(palasso) ``` Attaching some data to reproduce the examples: ```{r, eval=FALSE} attach(toydata) ``` ```{r, echo=FALSE} names <- names(toydata) for(i in 1:length(names)){ assign(names[i],toydata[[i]]) } rm(names) ``` Data are available for $n=30$ samples and $p=50$ covariate pairs. The object `y` contains the response (numeric vector of length $n$). The object `X` contains the covariates (list of two numeric matrices, both with $n$ rows and $p$ columns). ## Standard lasso The standard lasso is a good choice for exploiting either the first or the second covariate group: ```{r} object <- glmnet(y=y,x=X[[1]]) object <- glmnet(y=y,x=X[[2]]) ``` ## Paired lasso But the paired lasso might be a better choice for exploiting both covariates groups at once: ```{r} object <- palasso(y=y,X=X) ``` In contrast to the standard lasso, the paired lasso accounts for the structure between the covariate groups. Given a limited number of non-zero coefficients, we expect the paired lasso to outperform the standard lasso: ```{r,results='hide'} object <- palasso(y=y,X=X,max=10) ``` ## Methods Standard methods are available for the paired lasso: ```{r,results='hide'} weights(object) ``` ```{r,results='hide'} fitted(object) ``` ```{r,results='hide'} residuals(object) ``` ```{r,results='hide'} predict(object,newdata=X) ``` ## Reference Armin Rauschenberger [![AR](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0001-6498-4801), Iuliana Ciocănea-Teodorescu [![ICT](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0003-2489-9025), Marianne A. Jonker [![MAJ](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0003-0134-8482), Renée X. Menezes [![RXM](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0002-1378-2721), and Mark A. van de Wiel [![MvdW](https://info.orcid.org/wp-content/uploads/2019/11/orcid_16x16.png)](https://orcid.org/0000-0003-4780-8472) (2020). "Sparse classification with paired covariates". *Advances in Data Analysis and Classification* 14:571-588. [doi: 10.1007/s11634-019-00375-6](https://doi.org/10.1007/s11634-019-00375-6)