Package 'opImputation'

November 7, 2025

Type Package
Title Optimal Selection of Imputation Methods for Pain-Related Numerical Data
Version 0.6
Description A model-agnostic framework for selecting dataset-specific imputation methods for missing values in numerical data related to pain. Lotsch J, Ultsch A (2025) ``A model-agnostic framework for dataset-specific selection of missing value imputation methods in pain-related numerical data" Canadian Journal of Pain (in minor revision).
Depends R ($>= 3.5.0$)
Imports parallel, Rfit, methods, stats, caret, ABCanalysis, ggplot2, future, future.apply, progressr, missForest, utils, mice, miceRanger, multiUS, Amelia, mi, reshape2, DataVisualizations, abind, cowplot, twosamples, ggh4x, ggrepel, tools
LazyData true
Suggests testthat (>= 3.0.0)
License GPL-3
<pre>URL https://github.com/JornLotsch/opImputation</pre>
Encoding UTF-8
Date 2025-11-04
NeedsCompilation no
Author Jorn Lotsch [aut, cre] (ORCID: https://orcid.org/0000-0002-5818-6958), Alfred Ultsch [aut] (ORCID: https://orcid.org/0000-0002-7845-3283)
Maintainer Jorn Lotsch <j.lotsch@em.uni-frankfurt.de></j.lotsch@em.uni-frankfurt.de>
Repository CRAN
Date/Publication 2025-11-07 13:50:02 UTC
Contents
CodeinLogMetabolitesUrine

create_diagnostic_missings	 													7
impute_missings	 													8
LipidsPsychiatricPat	 													12
PainThresholds	 													12
QSTpainEJPtransf	 													13

Index 14

 ${\tt CodeinLogMetabolitesUrine}$

Codeine metabolite concentrations in urine.

Description

Data set from a pharmacogenetic investigation that assessed the formation of morphine from codeine in the presence of variants in cytochrome P450 2D6.

Usage

```
data("CodeinLogMetabolitesUrine")
```

Details

```
Size 50 x 5, stored in CodeinLogMetabolitesUrine["MOR", "M3G", "M6G", "C0D", "C6G"]
```

Examples

```
data(CodeinLogMetabolitesUrine)
str(CodeinLogMetabolitesUrine)
```

compare_imputation_methods

Compare Imputation Methods for Missing Value Analysis

Description

Performs a comprehensive comparative analysis of different imputation methods on a dataset by artificially inserting missings, applying various imputation techniques, and evaluating their performance through multiple metrics and visualizations. Optionally produces a final imputed dataset using the best-performing method.

Usage

```
compare_imputation_methods(
  data,
  imputation_methods = all_imputation_methods,
  imputation_repetitions = 20,
  perfect_methods_in_ABC = FALSE,
  n_{iterations} = 20,
  n_proc = getOption("mc.cores", 2L),
  percent_missing = 0.1,
  seed,
  mnar\_shape = 1,
  mnar_ity = 0,
  low_only = FALSE,
  fixed_seed_for_inserted_missings = FALSE,
  max_attempts = 1000,
  overall_best_z_delta = FALSE,
  produce_final_imputations = TRUE,
  plot_results = TRUE,
  verbose = TRUE
)
```

Arguments

data

Data frame or matrix containing numeric data. May contain existing missing values (NA).

imputation_methods

Character vector of imputation method names to compare. Default is all_imputation_methods. Must include at least two non-calibrating methods. Available options include:

Univariate methods: "median", "mean", "mode", "rSample"; Multivariate

methods: "bag", "bag_repeated", "rf_mice", "rf_mice_repeated", "rf_missForest",
"rf_missForest_repeated", "miceRanger", "miceRanger_repeated", "cart",
"cart_repeated", "linear", "pmm", "pmm_repeated", "knn3", "knn5", "knn7",
"knn9", "knn10", "ameliaImp", "ameliaImp_repeated", "miImp"; Diagnostic methods: "plus", "plusminus", "factor"; Calibrating methods: "tinyNoise_0.00001",
"tinyNoise_0.00001", "tinyNoise_0.0001", "tinyNoise_0.001", "tinyNoise_0.01",
"tinyNoise_0.05", "tinyNoise_0.1", "tinyNoise_0.2", "tinyNoise_0.5",
"tinyNoise_1". It is recommended that all imputation methods be used in a complete comparison (Default).

imputation_repetitions

Integer. Number of times each imputation method is repeated for each iteration. Default is 20.

perfect_methods_in_ABC

Whether to include perfect imputation methods in comparative selections. Default is FALSE.

n_iterations

Integer. Number of different missing data patterns to test. Default is 20.

n_proc

Integer. Number of processor cores to use for parallel processing. Default is getOption("mc.cores", 2L).

percent_missing

Numeric. Proportion of values to randomly set as missing in each iteration (0 to

1). Default is 0.1 (10%).

seed Integer. Random seed for reproducibility. If missing, reads current system seed.

Setting the parameter is recommended for better reproducibility.

mnar_shape Numeric. Shape parameter for MNAR (Missing Not At Random) mechanism.

Default is 1 (MCAR - Missing Completely At Random).

mnar_ity Numeric. Degree of missingness mechanism (0-1). Default is 0 (completely

random).

low_only Logical. If TRUE, only insert missings in lower values. Default is FALSE.

fixed_seed_for_inserted_missings

Logical. If TRUE, use same seed for inserting missings across all iterations.

Default is FALSE.

empty cases. Default is 1000.

overall_best_z_delta

Logical. If TRUE, compare all methods against the overall best; if FALSE,

compare against best within category. Default is FALSE.

produce_final_imputations

Logical. If TRUE, produce final imputed dataset using the best-performing univariate or multivariate method from the ABC analysis. The function will try methods in order of their ranking until one succeeds in producing a complete

dataset with no missing values. Default is TRUE.

plot_results Logical. If TRUE, show summary plots. Default is TRUE.

verbose Logical. If TRUE, print best method information and turn on messaging. De-

fault is TRUE.

Details

This function implements a model-agnostic framework for dataset-specific selection of missing value imputation methods. The analysis workflow:

- 1. Artificially inserts missing values into complete data
- 2. Applies multiple imputation methods
- 3. Calculates performance metrics (zDelta values)
- 4. Ranks methods using ABC analysis
- 5. Generates comprehensive visualizations
- 6. Optionally produces final imputed dataset using the best method

The zDelta metric represents standardized absolute differences between original and imputed values, providing a robust measure of imputation quality.

The MNAR mechanism allows testing methods under realistic scenarios:

- mnar_ity = 0: Missing Completely At Random (MCAR)
- mnar_ity > 0: Missing Not At Random with specified degree

- low_only = TRUE: Missings preferentially in lower values
- mnar_shape: Controls shape of missingness probability distribution

Final Imputation Process: When produce_final_imputations = TRUE, the function automatically:

- 1. Extracts the ranked list of methods from ABC analysis results
- 2. Filters to only univariate and multivariate methods (excludes poisoned/calibrating methods)
- 3. Tries each method in order of performance ranking
- 4. Stops at the first method that successfully produces a complete dataset with no missing values
- 5. Prints informative console output showing which method was used, its ABC category, score, and ranking

If all methods fail to produce a complete dataset, the function returns NULL for both imputed_data and method_used_for_imputation and prints a warning message.

Value

Returns a list containing:

all_imputation_runs

List containing all imputation results generated across repeated simulation runs and missing-data patterns.

zdelta_metrics Standardized z-delta error metrics, including raw values, medians, and variable-wise summaries quantifying deviations between original and imputed data.

method_performance_summary

Comprehensive performance summary of all imputation methods, including ranking metrics and Activity-Based Classification (ABC) results.

best_overall_method

Character. Name of the best-performing imputation method for the analyzed dataset.

best_univariate_method

Character. Name of the top-performing univariate (single-variable) imputation method.

best_multivariate_method

Character. Name of the top-performing multivariate (multi-variable) imputation method.

best_uni_or_multivariate_method

Character. Name of the leading combined uni/multivariate imputation method.

best_poisoned_method

Character. Name of the top-performing stress-test (formerly "poisoned") method.

abc_results_table

Data frame containing the ABC (Activity-Based Classification) analysis results, including method categories and performance scores.

fig_zdelta_distributions

ggplot object displaying the distribution of standardized z-delta values for the best-performing methods.

fig_summary_comparison

ggplot object providing a combined summary figure integrating ABC classification and z-delta plots for comparative visualization.

final_imputed_data

Data frame containing the final dataset with all missing values filled in using the best-performing method (only if produce_final_imputations = TRUE). Returns NULL if no complete dataset could be produced or if imputation was disabled.

final_imputation_method

Character. Name of the imputation algorithm automatically selected and applied to create the final complete dataset. Returns NULL if imputation was disabled or failed.

Note

The function requires at least two non-calibrating imputation methods for comparison. Parallel processing can significantly improve performance on multi-core systems. Explicitly setting the seed parameter is strongly recommended for reproducibility.

When produce_final_imputations = TRUE, the function will display console output indicating which method was used for the final imputation, including its ABC category (A, B, or C), ABC score, and ranking among valid methods. This provides transparency and allows users to understand the quality of the chosen imputation method.

Author(s)

Jorn Lotsch, Alfred Ultsch

References

Lotsch J, Ultsch A. (2025). A model-agnostic framework for dataset-specific selection of missing value imputation methods in pain-related numerical data. Can J Pain (in minor revision)

See Also

```
impute_missings for single imputation operations
create_diagnostic_missings for creating diagnostic missing values
```

```
# Load example data
data_iris <- iris[,1:4]

# Add some missings
set.seed(42)
for(i in 1:4) data_iris[sample(1:nrow(data_iris), 0.05*nrow(data_iris)), i] <- NA

# Basic comparison with a subset of methods
results <- compare_imputation_methods(
   data = data_iris,
   imputation_methods = c("mean", "median", "rSample"),</pre>
```

```
n_iterations = 2,
imputation_repetitions = 2,
produce_final_imputations = FALSE,
plot_results = FALSE,
verbose = FALSE
)

# Print results
# print(results)

# Cleanup to avoid open sockets during R CMD check
future::plan(future::sequential)
```

create_diagnostic_missings

Create Diagnostic Missing Values in Data

Description

Introduces additional missing values into a dataset (which may already contain missings) using various missingness mechanisms: Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR). Missing values are only inserted at positions that currently contain actual values (non-NA).

Usage

```
create_diagnostic_missings(
    X,
    Prob = 0.1,
    mnarity = 0,
    mnarshape = 1,
    lowOnly = FALSE,
    seed,
    maxAttempts = 1000
)
```

Arguments

X	Data frame or matrix with numeric data. May contain existing missing values
Prob	Numeric between 0 and 1. Proportion of non-missing values to set as missing (default: 0.1)
mnarity	Numeric between 0 and 1. Proportion of MNAR (vs MCAR/MAR) missingness (default: 0)
mnarshape	Numeric >= 1. Shape parameter for MNAR probability distribution (default: 1)
lowOnly	Logical. If TRUE, only creates missings for low values in MNAR case (default: FALSE)
seed	Integer. Random seed for reproducibility (default: 42)

maxAttempts Integer. Maximum number of attempts to generate valid missing pattern (default: 100)

Details

The function creates missing values using a combination of mechanisms:

- MCAR: Random missingness independent of data values (controlled by 1-mnarity)
- MAR/MNAR: Value-dependent missingness (controlled by mnarity)

The shape of the MNAR probability distribution is controlled by mnarshape. When lowOnly = TRUE, MNAR mechanism targets only low values; otherwise it targets extreme values (both high and low).

The function ensures that no row ends up with all values missing by excluding positions from the sampling pool that would create completely missing rows.

Value

A list with two elements:

toDelete List of row indices where values were set to missing, one vector per column

missData Data frame with introduced missing values

Examples

```
# Create 10% MCAR missings
result <- create_diagnostic_missings(
    x = iris[,1:4],
    Prob = 0.1,
    mnarity = 0
)

# Create 20% missings with 50% MNAR targeting low values
result <- create_diagnostic_missings(
    x = iris[,1:4],
    Prob = 0.2,
    mnarity = 0.5,
    lowOnly = TRUE
)</pre>
```

impute_missings

Impute Missing Values Using Specified Method

Description

Fills in missing values (NA) in numeric data using a specified imputation method. Provides a unified interface to univariate, multivariate, ensemble, and diagnostic imputation approaches. The function automatically handles method-specific parameters and error recovery.

Usage

```
impute_missings(
   x,
   method = "rf_missForest",
   ImputationRepetitions = 10,
   seed = NULL,
   x_orig = NULL
)
```

Arguments

x Data frame or matrix containing numeric data with missing values (NA). All

columns must be numeric.

method Character string specifying which imputation method to use. Default is "rf_missForest".

See Details for all available methods.

ImputationRepetitions

Integer. Number of repetitions for methods ending with "_repeated". These methods perform multiple imputations and return the median across repetitions

for increased stability. Default is 10. Ignored for non-repeated methods.

seed Integer. Random seed for reproducibility. If missing, reads current system seed.

Setting the parameter is recommended for better reproducibility. Must be the

same as set in compare_imputation_methods for reprodicible results.

x_orig Data frame or matrix. Original complete data required only for poisoned and

calibrating methods (used for validation/benchmarking). Must have same di-

mensions as x. Default is NULL.

Details

This function provides access to multiple imputation algorithms through a single interface. Simply specify the desired method name via the method parameter.

Available Methods:

Univariate methods (replace each missing value independently):

- "median" Column median
- "mean" Column mean
- "mode" Column mode (most frequent value)
- "rSample" Random sample from observed values

Bagging methods (bootstrap aggregating with decision trees):

- "bag" Single bagged tree imputation
- "bag_repeated" Repeated bagging with median aggregation

Random forest methods (ensemble of decision trees):

- "rf_mice" Random forest via mice package
- "rf_mice_repeated" Repeated RF via mice

- "rf_missForest" Random forest via missForest package (recommended)
- "rf_missForest_repeated" Repeated RF via missForest
- "miceRanger" Random forest via miceRanger package
- "miceRanger_repeated" Repeated RF via miceRanger

Tree-based methods:

- "cart" Classification and regression trees
- "cart_repeated" Repeated CART with median aggregation

Regression methods:

- "linear" Lasso regression (L1-regularized linear model)
- "pmm" Predictive mean matching
- "pmm_repeated" Repeated PMM with median aggregation

k-Nearest neighbors methods:

• "knn3", "knn5", "knn7", "knn9", "knn10" - k-NN with specified number of neighbors

Multiple imputation methods:

- "ameliaImp" Single imputation via Amelia II
- "ameliaImp_repeated" Multiple imputations via Amelia II
- "miImp" Multiple imputation via mi package

Poisoned methods (require x_orig, for validation only):

- "plus" Add systematic positive offset
- "plusminus" Add alternating positive/negative offset
- "factor" Multiply by constant factor

Calibrating methods (require x_orig, for benchmarking):

• "tinyNoise_0.000001" through "tinyNoise_1" - Add small random noise with specified magnitude (available magnitudes: 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1)

Repeated methods: Methods ending with "_repeated" perform multiple independent imputations and return the median value across all repetitions. This typically provides more stable and robust results but requires more computation time. The number of repetitions is controlled by the ImputationRepetitions parameter.

Method selection guidance:

- For quick results: Use "median" or "mean"
- For moderate missing data: Use "rf_missForest" or "knn5"
- For high-quality results: Use "rf_missForest_repeated" or "pmm_repeated"
- For systematic comparison: Use compare_imputation_methods

Value

Returns a data frame with the same dimensions and column names as the input x, but with missing values filled in according to the specified method. If imputation fails, returns a data frame with all values set to NA.

Note

- Setting seed is strongly recommended for reproducibility
- Repeated methods provide better results but take longer to compute
- · Poisoned and calibrating methods are for validation/benchmarking only
- If a method fails, the function returns NA values rather than throwing an error
- Some methods may be slow on large datasets

Author(s)

Jorn Lotsch, Alfred Ultsch

References

Lotsch J, Ultsch A. (2025). A model-agnostic framework for dataset-specific selection of missing value imputation methods in pain-related numerical data. Can J Pain (in minor revision)

See Also

compare_imputation_methods

```
# Load example data
data_iris <- iris[,1:4]

# Add some misisngs
set.seed(42)
for(i in 1:4) data_iris[sample(1:nrow(data_iris), 0.05*nrow(data_iris)), i] <- NA

# Simple univariate imputation with median
data_iris_imputed_median <- impute_missings(
    data_iris,
    method = "median"
)

# Show data
head(data_iris_imputed_median)</pre>
```

12 PainThresholds

LipidsPsychiatricPat Chromatography mass spectrometry of lipid mediators measured in blood samples.

Description

Data set from a lipidomic investigation that assessed lipid mediators in blood samples in patients.

Usage

```
data("LipidsPsychiatricPat")
```

Details

```
Size 94 \times 8, stored in LipidsPsychiatricPat["S1P", "C16Sphinganin", "C16Cer", "C20Cer", "C24Cer", "C24_1Cer", "C16GluCer", "C16LacCer"]
```

Examples

```
data(LipidsPsychiatricPat)
str(LipidsPsychiatricPat)
```

PainThresholds

Psychophysical data from an investigation of pain thresholds.

Description

Data set from an investigation of pain thresholds to various stimuli in healthy volunteers.

Usage

```
data("PainThresholds")
```

Details

```
Size 125 \times 8, stored in PainThresholds["von.Frey", "von.Frey.Caps", "Heat", "Heat.Caps", "Cold", "Cold.Menth", "Pressure", "Electric"]
```

```
data(PainThresholds)
str(PainThresholds)
```

QSTpainEJPtransf 13

 ${\tt QSTpainEJPtransf}$

Psychophysical data from a clinical quantitative sensory testing study.

Description

Data set from a psychophysical investigation in a clinical quantitative sensory testing study in healthy subjects.

Usage

```
data("QSTpainEJPtransf")
```

Details

```
Size 72 \times 19, stored in QSTpainEJPtransf["PressureThr", "PressureTol", "TSACold", "ElectricThr", "ElectricTol", "Co2Thr", "CO2VAS", "LaserThr", "LaserVAS", "CDT", "WDT", "TSL", "CPT", "HPT", "PPT", "MPT", "MPS", "WUR", "MDT"]
```

```
data(QSTpainEJPtransf)
str(QSTpainEJPtransf)
```

Index

```
* NA
    impute_missings, 8
* data preprocessing
    compare_imputation_methods, 2
    impute_missings, 8
* datagen
    create_diagnostic_missings, 7
* imputation
    compare\_imputation\_methods, 2
    impute_missings, 8
* machine learning
    compare_imputation_methods, 2
* missing data
    \verb|compare_imputation_methods|, 2|
    impute_missings, 8
CodeinLogMetabolitesUrine, 2
compare_imputation_methods, 2, 10, 11
create_diagnostic_missings, 6, 7
impute\_missings, 6, 8
LipidsPsychiatricPat, 12
PainThresholds, 12
QSTpainEJPtransf, 13
```