## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(omock) library(dplyr, warn.conflicts = FALSE) library(PatientProfiles) ## ----warning = FALSE---------------------------------------------------------- # Define a list of user-defined cohort tables cohortTables <- list( cohort1 = tibble( subject_id = 1:10L, cohort_definition_id = rep(1L, 10), cohort_start_date = as.Date("2020-01-01") + 1:10, cohort_end_date = as.Date("2020-01-01") + 11:20 ), cohort2 = tibble( subject_id = 11:20L, cohort_definition_id = rep(2L, 10), cohort_start_date = as.Date("2020-02-01") + 1:10, cohort_end_date = as.Date("2020-02-01") + 11:20 ) ) # Create a mock CDM object from the user-defined tables cdm <- mockCdmFromTables(tables = cohortTables) cdm ## ----------------------------------------------------------------------------- cdm$cohort1 |> addInObservation() cdm$observation_period ## ----------------------------------------------------------------------------- person <- tibble(person_id = 1:5L, gender_concept_id = 8532L, year_of_birth = 1992) ## ----------------------------------------------------------------------------- drugExposure <- tibble( person_id = rep(1:5L, 2), drug_concept_id = 19073188L, drug_exposure_start_date = rep(as.Date(c("2000-01-01", "2000-06-1")), each = 5), drug_exposure_end_date = drug_exposure_start_date + c(10L, 20L, 100L, 140L, 30L, 50L, 30L, 20L, 45L, 35L) ) ## ----eval = FALSE------------------------------------------------------------- # cdm <- mockCdmFromTables(tables = list(person = person, drug_exposure = drugExposure)) # # cdm ## ----eval = FALSE------------------------------------------------------------- # cdm$drug_exposure |> # addInObservation() |> # group_by(in_observation) |> # tally()