## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( message = FALSE, warning = FALSE, error = FALSE, collapse = TRUE, comment = "#>" ) ## ----setup, echo = FALSE------------------------------------------------------ library(oldr) ## ----workflow, echo = FALSE, eval = TRUE, fig.alt = "RAM-OP workflow", out.width = "80%"---- knitr::include_graphics("figures/ramOPworkflow.png") ## ----data, echo = TRUE, eval = TRUE------------------------------------------- testSVY ## ----step1, echo = TRUE, eval = FALSE----------------------------------------- # ## Process and recode all standard RAM-OP indicators in the testSVY dataset # create_op(svy = testSVY) ## ----step1a, echo = FALSE, eval = TRUE---------------------------------------- ## Process and recode all standard RAM-OP indicators in the testSVY dataset create_op(svy = testSVY) ## ----bbw, echo = FALSE, eval = TRUE, fig.alt = "Blocked weighted bootstrap", fig.align = "center", out.width = "85%"---- knitr::include_graphics(path = "https://rapidsurveys.io/ramOPmanual/figures/bbw.png") ## ----probit, echo = FALSE, eval = TRUE, fig.alt = "RAM-OP estimators", out.width = "100%", fig.align = "center"---- knitr::include_graphics(path = "https://rapidsurveys.io/ramOPmanual/figures/indicators26.png") ## ----classicEstimator, echo = TRUE, eval = FALSE------------------------------ # ## Process and recode RAM-OP data (testSVY) # df <- create_op(svy = testSVY) # # ## Perform classic estimation on recoded data using appropriate weights provided by testPSU # classicDF <- estimate_classic(x = df, w = testPSU) ## ----classicEstimatorX, echo = FALSE, eval = TRUE----------------------------- ## Process and recode RAM-OP data (testSVY) df <- create_op(svy = testSVY) ## Perform classic estimation on recoded data using appropriate weights provided by testPSU classicDF <- estimate_classic(x = df, w = testPSU, replicates = 9) ## Return results classicDF ## ----probitEstimator, echo = TRUE, eval = FALSE------------------------------- # ## Process and recode RAM-OP data (testSVY) # df <- create_op(svy = testSVY) # # ## Perform probit estimation on recoded data using appropriate weights provided by testPSU # probitDF <- estimate_probit(x = df, w = testPSU) ## ----probitEstimatorX, echo = FALSE, eval = TRUE------------------------------ ## Process and recode RAM-OP data (testSVY) df <- create_op(svy = testSVY) ## Perform classic estimation on recoded data using appropriate weights provided by testPSU probitDF <- estimate_probit(x = df, w = testPSU, replicates = 9) ## Return results probitDF ## ----mergeResults, echo = TRUE, eval = FALSE---------------------------------- # ## Merge classicDF and probitDF # resultsDF <- merge_op(x = classicDF, y = probitDF) # # resultsDF ## ----mergeResultsX, echo = FALSE, eval = TRUE--------------------------------- ## Merge classicDF and probitDF resultsDF <- merge_op(x = classicDF, y = probitDF) resultsDF ## ----chartADL, echo = TRUE, eval = TRUE--------------------------------------- chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test")) ## ----checkChart, echo = TRUE, eval = TRUE------------------------------------- file.exists(path = file.path(tempdir(), "test.png")) ## ----showChart, echo = FALSE, eval = TRUE, fig.alt = "RAM-OP chart showing information on activities of daily living", out.width = "85%", fig.align = "center"---- #knitr::include_graphics(path = "man/figures/test.ADL.png") chart_op_adl(x = create_op(testSVY), save_chart = FALSE) ## ----report, echo = TRUE, eval = TRUE----------------------------------------- report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST")) ## ----checkTable, echo = TRUE, eval = TRUE------------------------------------- file.exists(path = file.path(tempdir(), "TEST.csv")) ## ----showTable, echo = FALSE, eval = TRUE------------------------------------- read.csv( file = file.path(tempdir(), "TEST.report.csv"), stringsAsFactors = FALSE ) ## ----estimatePipe1, echo = TRUE, eval = TRUE---------------------------------- testSVY |> create_op() |> estimate_op(w = testPSU, replicates = 9) |> report_op_table(filename = file.path(tempdir(), "TEST")) ## ----estimatePipe2, echo = TRUE, eval = TRUE---------------------------------- file.exists(file.path(tempdir(), "TEST.report.csv")) ## ----estimatePipe3, echo = FALSE, eval = TRUE--------------------------------- read.csv( file = paste(tempdir(), "TEST.report.csv", sep = "/"), stringsAsFactors = FALSE ) ## ----estimateReport1, echo = TRUE, eval = FALSE------------------------------- # testSVY |> # create_op() |> # estimate_op(w = testPSU, replicates = 9) |> # report_op_html( # svy = testSVY, filename = file.path(tempdir(), "ramOPreport") # ) ## ----estimateReport2, echo = FALSE, eval = TRUE, fig.alt = "Example of a RAM-OP HTML report"---- knitr::include_graphics("figures/htmlReport.png")