## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- knitr::opts_chunk$set(warning = FALSE, message = FALSE) library(nycOpenData) library(ggplot2) library(dplyr) ## ----small-sample------------------------------------------------------------- small_sample <- nyc_locallaw97_shelter_pets(limit = 3) small_sample # Seeing what columns are in the dataset colnames(small_sample) ## ----filter-year-------------------------------------------------------------- recent_quarters <- nyc_locallaw97_shelter_pets( limit = 3, filters = list(date_year = 2024)) recent_quarters # Checking to see the filtering worked unique(recent_quarters$date_year) ## ----filter-multiple---------------------------------------------------------- # Creating the dataset pets_filtered <- nyc_locallaw97_shelter_pets( limit = 20, filters = list( date_year = 2024, had_pet = 1)) # Calling head of our new dataset head(pets_filtered) # Quick check to make sure our filtering worked nrow(pets_filtered) unique(pets_filtered$date_year) unique(pets_filtered$had_pet) ## ----had-pet-year-graph, fig.alt="Bar chart showing the number of shelter applicants with pets by year.", fig.cap="Bar chart showing the number of shelter applicants with pets by year.", fig.height=5, fig.width=7---- pets <- nyc_locallaw97_shelter_pets(limit = 100) pets$had_pet <- as.numeric(pets$had_pet) # Summarize by year pet_by_year <- pets %>% group_by(date_year) %>% summarize(applicants_with_pets = sum(had_pet, na.rm = TRUE)) # Plot ggplot(pet_by_year, aes(x = date_year, y = applicants_with_pets)) + geom_col(fill = "darkseagreen") + theme_minimal() + labs( title = "Shelter Applicants With Pets by Year (NYC)", subtitle = "Local Law 97 - Pets in Shelter Report", x = "Year", y = "Number of Applicants With Pets" )