## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message = FALSE--------------------------------------------------------- library(nlpsem) mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE) ## ---- message = FALSE--------------------------------------------------------- load(system.file("extdata", "getMIX_examples.RData", package = "nlpsem")) ## ---- message = FALSE, eval = FALSE------------------------------------------- # # Load ECLS-K (2011) data # data("RMS_dat") # RMS_dat0 <- RMS_dat # # Re-baseline the data so that the estimated initial status is for the # # starting point of the study # baseT <- RMS_dat0$T1 # RMS_dat0$T1 <- RMS_dat0$T1 - baseT # RMS_dat0$T2 <- RMS_dat0$T2 - baseT # RMS_dat0$T3 <- RMS_dat0$T3 - baseT # RMS_dat0$T4 <- RMS_dat0$T4 - baseT # RMS_dat0$T5 <- RMS_dat0$T5 - baseT # RMS_dat0$T6 <- RMS_dat0$T6 - baseT # RMS_dat0$T7 <- RMS_dat0$T7 - baseT # RMS_dat0$T8 <- RMS_dat0$T8 - baseT # RMS_dat0$T9 <- RMS_dat0$T9 - baseT # # Standardize time-invariant covariates (TICs) # ## ex1 and ex2 are standardized growth TICs in models # RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) # RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus) # ## gx1 and gx2 are standardized cluster TICs in models # RMS_dat0$gx1 <- scale(RMS_dat0$INCOME) # RMS_dat0$gx2 <- scale(RMS_dat0$EDU) # xstarts <- mean(baseT) ## ---- message = FALSE, eval = FALSE------------------------------------------- # Math_BLS_LGCM1 <- getLGCM( # dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE, # records = 1:9, res_scale = 0.1 # ) # Math_BLS_LGCM2 <- getMIX( # dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM", y_var = "M", # t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE, # res_scale = list(0.3, 0.3) # ) # set.seed(20191029) # Math_BLS_LGCM3 <- getMIX( # dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM", y_var = "M", # t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE, # res_scale = list(0.3, 0.3, 0.3), tries = 10 # ) ## ----------------------------------------------------------------------------- Figure1 <- getFigure( model = Math_BLS_LGCM1@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month", outcome = "Mathematics" ) show(Figure1) Figure2 <- getFigure( model = Math_BLS_LGCM2@mxOutput, nClass = 2, cluster_TIC = NULL, sub_Model = "LGCM", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month", outcome = "Mathematics" ) show(Figure2) Figure3 <- getFigure( model = Math_BLS_LGCM3@mxOutput, nClass = 3, cluster_TIC = NULL, sub_Model = "LGCM", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month", outcome = "Mathematics" ) show(Figure3) getSummary(model_list = list(Math_BLS_LGCM1@mxOutput, Math_BLS_LGCM2@mxOutput, Math_BLS_LGCM3@mxOutput), HetModels = TRUE) ## ---- message = FALSE, eval = FALSE------------------------------------------- # paraBLS_PLGCM.r <- c( # "Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_knot", # paste0("Y_psi", c("00", "01", "02", "11", "12", "22")), "Y_res", # "Z_mueta0", "Z_mueta1", "Z_mueta2", "Z_knot", # paste0("Z_psi", c("00", "01", "02", "11", "12", "22")), "Z_res", # paste0("YZ_psi", c("00", "10", "20", "01", "11", "21", "02", "12", "22")), # "YZ_res" # ) # set.seed(20191029) # RM_BLS_PLGCM3 <- getMIX( # dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "MGM", # cluster_TIC = c("gx1", "gx2"), t_var = c("T", "T"), y_var = c("R", "M"), # curveFun = "BLS", intrinsic = FALSE, records = list(1:9, 1:9), # res_scale = list(c(0.3, 0.3), c(0.3, 0.3), c(0.3, 0.3)), # res_cor = list(0.3, 0.3, 0.3), y_model = "LGCM", tries = 10, paramOut = TRUE, # names = paraBLS_PLGCM.r # ) ## ----------------------------------------------------------------------------- Figure4 <- getFigure( model = RM_BLS_PLGCM3@mxOutput, nClass = 3, cluster_TIC = c("gx1", "gx2"), sub_Model = "MGM", y_var = c("R", "M"), curveFun = "BLS", y_model = "LGCM", t_var = c("T", "T"), records = list(1:9, 1:9), m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month", outcome = c("Reading", "Mathematics") ) show(Figure4)