Type: | Package |
Title: | Linear and Nonlinear Longitudinal Process in Structural Equation Modeling Framework |
Version: | 0.3 |
Description: | Provides computational tools for nonlinear longitudinal models, in particular the intrinsically nonlinear models, in four scenarios: (1) univariate longitudinal processes with growth factors, with or without covariates including time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal processes that facilitate the assessment of correlation or causation between multiple longitudinal variables; (3) multiple-group models for scenarios (1) and (2) to evaluate differences among manifested groups, and (4) longitudinal mixture models for scenarios (1) and (2), with an assumption that trajectories are from multiple latent classes. The methods implemented are introduced in Jin Liu (2023) <doi:10.48550/arXiv.2302.03237>. |
License: | GPL (≥ 3.0) |
Encoding: | UTF-8 |
LazyData: | true |
Depends: | R (≥ 4.0.0), OpenMx (≥ 2.21.8) |
Imports: | ggplot2, dplyr, tidyr, stringr, Matrix, nnet, readr, methods |
RoxygenNote: | 7.2.3 |
URL: | https://github.com/Veronica0206/nlpsem |
BugReports: | https://github.com/Veronica0206/nlpsem/issues |
Suggests: | knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2023-09-12 15:23:45 UTC; jinliu |
Author: | Jin Liu [aut, cre] |
Maintainer: | Jin Liu <Veronica.Liu0206@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2023-09-12 22:20:02 UTC |
S4 Class for estimated factor scores and their standard errors.
Description
S4 Class for the output structure for the getIndFS()
function.
Slots
scores_est
A matrix of estimated factor scores.
scores_se
A matrix of standard errors of estimated factor scores.
S4 Class for kappa statistic with confidence interval and judgment.
Description
S4 Class for the output structure for the getLatentKappa()
function.
Slots
kappa_value
A character vector for the kappa statistic with $95%$ CI.
judgment
A character vector for the judgement for agreement.
S4 Generic for summarizing an optimized MxModel.
Description
Generic function for printing model summary of MxModel object.
Usage
ModelSummary(object)
Arguments
object |
An object of the appropriate class. |
S4 Method for summarizing an optimized MxModel.
Description
Method for printing model summary of MxModel object.
Usage
## S4 method for signature 'myMxOutput'
ModelSummary(object)
Arguments
object |
An object of class "myMxOutput". |
ECLS-K (2011) Sample Dataset for Demonstration
Description
A sample dataset extracted from the public-use Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011) collected by the National Center for Education Statistics (NCES). This dataset is NOT a posting of the original data, and it has been processed and formatted for use in demonstration purposes within this package. For access to the original data, please visit the NCES data products page at https://nces.ed.gov/ecls/dataproducts.asp.
Usage
RMS_dat
Format
A data frame with 500 rows and 49 variables:
- ID
Identification number.
- R1, R2, R3, R4, R5, R6, R7, R8, R9
Reading scores from 9 study waves.
- M1, M2, M3, M4, M5, M6, M7, M8, M9
Math scores from 9 study waves.
- S2, S3, S4, S5, S6, S7, S8, S9
Science scores from 8 study waves (starting from the second study wave).
- T1, T2, T3, T4, T5, T6, T7, T8, T9
Children's age-in-month at 9 study waves.
- SEX
Sex of the child.
- RACE
Race of the child.
- LOCALE
Locale of the child's school.
- INCOME
Family income.
- SCHOOL_TYPE
Type of the child's school.
- Approach_to_Learning
Teacher's rating on the child's approach to learning.
- Self_control
Teacher's rating on the child's self-control.
- Interpersonal
Teacher's rating on the child's interpersonal skills.
- External_prob_Behavior
Teacher's rating on the child's external problem behaviors.
- Internal_prob_Behavior
Teacher's rating on the child's internal problem behaviors.
- Attention_focus
Teacher's rating on the child's attention focus.
- Inhibitory_Ctrl
Teacher's rating on the child's inhibitory control.
- EDU
Highest education level between the child's parents.
Details
The ECLS-K:2011 offers a comprehensive and detailed set of information about children's early life experiences, focusing on children's health, development, education, and experiences in the years leading up to kindergarten.
The sample dataset included in this package is used for demonstrating the functionality of the package's functions and
it does not include survey weights. In real analysis, the complex survey weights provided by NCES should be utilized
appropriately, for instance, as done in R packages such as lavaan.survey
or EdSurvey
if not using SEM.
Please note that this data must not be used to attempt to identify respondents. For detailed documentation and proper usage of the ECLS-K:2011 data, please refer to the original source at the National Center for Education Statistics (NCES) website: https://nces.ed.gov/.
Source
https://nces.ed.gov/ecls/dataproducts.asp
S4 Class for p values and confidence intervals (when specified).
Description
S4 Class for the output structure for the getEstimateStats()
function.
Slots
wald
A data frame for p values and Wald confidence intervals (when specified).
likelihood
A data frame for Likelihood confidence intervals (when specified).
bootstrap
A data frame for Bootstrap confidence intervals (when specified).
S4 Class for displaying figures
Description
S4 Class to hold the figures output from the getFigure function.
Slots
figures
A list of lists containing figures for each specified sub_model and y_model (when applicable).
Calculate p-Values and Confidence Intervals of Parameters for a Fitted Model
Description
This function calculates p-values and confidence intervals (CIs) of parameters for a given model.It supports different types of CIs, including Wald CIs, likelihood-based CIs, bootstrap CIs, or all three.
Usage
getEstimateStats(
model = NULL,
est_in,
p_values = TRUE,
CI = TRUE,
CI_type = "Wald",
rep = NA,
conf.level = 0.95
)
Arguments
model |
A fitted mxModel object. Specifically, this should be the |
est_in |
The |
p_values |
A logical flag indicating whether to calculate p-values. Default is |
CI |
A logical flag indicating whether to compute confidence intervals. Default is |
CI_type |
A string specifying the type of confidence interval to compute. Supported options include
|
rep |
An integer specifying the number of replications for bootstrap. This is applicable if |
conf.level |
A numeric value representing the confidence level for confidence interval calculation. Default is
|
Value
An object of class StatsOutput
with potential slots:
-
wald
: Contains a data frame with, point estimates, standard errors p-values, and Wald confidence intervals (when specified). -
likelihood
: Contains a data frame with likelihood-based confidence intervals (when specified). -
bootstrap
: Contains a data frame with bootstrap confidence intervals (when specified).
The content of these slots can be printed using the printTable()
method for S4 objects.
References
-
Casella, G. & Berger, R.L. (2002). Statistical Inference (2nd ed.). Duxbury Press.
-
Madansky, A. (1965). Approximate Confidence Limits for the Reliability of Series and Parallel Systems. Technometrics, 7(4), 495-503. Taylor & Francis, Ltd. https://www.jstor.org/stable/1266390
-
Matthews, D. E. (1988). Likelihood-Based Confidence Intervals for Functions of Many Parameters. Biometrika, 75(1), 139-144. Oxford University Press. https://www.jstor.org/stable/2336444
-
Efron, B. & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit bilinear spline latent growth curve model (fixed knots)
paraBLS_LGCM.r <- c(
"mueta0", "mueta1", "mueta2", "knot",
paste0("psi", c("00", "01", "02", "11", "12", "22")),
"residuals"
)
BLS_LGCM_r <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, res_scale = 0.1, paramOut = TRUE, names = paraBLS_LGCM.r)
## Generate P value and Wald confidence intervals
getEstimateStats(
est_in = BLS_LGCM_r@Estimates, CI_type = "Wald"
)
# Fit bilinear spline latent growth curve model (random knots) with time-invariant covariates for
# mathematics development
## Define parameter names
paraBLS.TIC_LGCM.f <- c(
"alpha0", "alpha1", "alpha2", "alphag",
paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "residuals",
paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")), paste0("mux", 1:2),
paste0("phi", c("11", "12", "22")), "mueta0", "mueta1", "mueta2", "mu_knot"
)
## Fit the model
BLS_LGCM.TIC_f <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE, records = 1:9,
growth_TIC = c("ex1", "ex2"), res_scale = 0.1, paramOut = TRUE, names = paraBLS.TIC_LGCM.f
)
## Change optimizer to "SLSQP" for getting likelihood-based confidence interval
mxOption(model = NULL, key = "Default optimizer", "SLSQP", reset = FALSE)
## Generate P value and all three types of confidence intervals
getEstimateStats(
model = BLS_LGCM.TIC_f@mxOutput, est_in = BLS_LGCM.TIC_f@Estimates, CI_type = "all", rep = 1000
)
Generate Visualization for Fitted Model
Description
This function generates visualizations for the output of a fitted model. When a Latent Growth Curve Model (LGCM) is fitted for the longitudinal process, it provides (class-specific) estimated growth status with 95 intervals. When a Latent Change Score Model (LCSM) is fitted for the longitudinal process, it provides (class-specific) estimated growth rate with 95 visualizations are particularly useful for understanding the results and trajectories of different classes or groups within the model.
Usage
getFigure(
model,
nClass = NULL,
cluster_TIC = NULL,
grp_var = NULL,
sub_Model,
y_var,
curveFun,
y_model = NULL,
t_var,
records,
m_var = NULL,
x_type = NULL,
x_var = NULL,
xstarts,
xlab = "Time",
outcome = "Process"
)
Arguments
model |
A fitted mxModel object. Specifically, this should be the |
nClass |
An integer specifying the number of latent classes for the mixture model or manifested classes for multiple
group model. Default is |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s)
indicating cluster formations. Default is |
grp_var |
A string specifying the column that indicates manifested classes when applicable. |
sub_Model |
A string that specifies the (class-specific) model. Supported sub-models include |
y_var |
A string or character vector representing the prefix of the column names for the outcome variable(s) at each study wave. |
curveFun |
A string specifying the functional forms of the growth curve(s). Supported options for |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
t_var |
A string representing the prefix of the column names corresponding to the time variable at each study wave. |
records |
A numeric vector representing the indices of the study waves. |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each time point.
Default is |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
xstarts |
A numeric value to indicate the starting time of the longitudinal process. |
xlab |
A string representing the time unit (e.g., "Week", "Month", or "Year") for the x-axis. Default is "Time". |
outcome |
A string or character vector representing the name(s) of the longitudinal process(es) under examination. |
Value
An object of class figOutput
containing a slot named figures
. This slot holds a ggplot object or a list
of ggplot objects, each representing a figure for the fitted model. If the figures
slot contains a list of ggplot objects,
individual figures can be visualized using the show()
function.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
xstarts <- mean(baseT)
# Plot single group LGCM model
set.seed(20191029)
BLS_LGCM1 <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS",
intrinsic = FALSE, records = 1:9, res_scale = 0.1)
Figure1 <- getFigure(
model = BLS_LGCM1@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
show(Figure1)
# Plot mixture LGCM model
BLS_LGCM2 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3)
)
Figure2 <- getFigure(
model = BLS_LGCM2@mxOutput, nClass = 2, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
show(Figure2)
Helper Function to Generate Visualization for a Fitted Model
Description
This is an internal function that generates a ggplot object for a fitted model. It is called by the getFigure
function.
Usage
getFitFig(
model,
nClass,
cluster_TIC,
grp_var,
sub_Model,
t_var,
records,
y_var,
curveFun,
y_model,
xstarts,
xlab,
outcome
)
Arguments
model |
A fitted mxModel object. This is the output from one of the estimation functions in this package.
It takes value passed from |
nClass |
An integer specifying the number of classes for the mixture model or multiple group model. It
takes value passed from |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s)
indicating cluster formations. It takes value passed from |
grp_var |
A string specifying the column that indicates manifested classes when applicable. It takes the value
passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
t_var |
A string representing the prefix of the column names corresponding to the time variable at each study
wave. It takes value passed from |
records |
A numeric vector representing the indices of the study waves. It takes value passed from |
y_var |
A string or character vector representing the prefix of the column names for the outcome variable(s)
at each study wave. It takes value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
xstarts |
A numeric value to indicate the starting time of the longitudinal process. It takes value passed from |
xlab |
A string representing the time unit (e.g., "Week", "Month", or "Year") for the x-axis. Default is
"Time". It takes value passed from |
outcome |
A string or character vector representing the name(s) of the longitudinal process(es) under examination.
It takes value passed from |
Value
A ggplot object or a list of ggplot objects.
Derive Individual Factor Scores for Each Latent Variable Included in Model
Description
This function computes individual factor scores for each latent variable in a given model. It supports three types of factor scores: maximum likelihood, weighted maximum likelihood, and regression.
Usage
getIndFS(model, FS_type = "Regression")
Arguments
model |
A fitted mxModel object. Specifically, this should be the |
FS_type |
A string specifying the type of factor scores to compute. Supported options include |
Value
An object of class FSOutput
with two slots:
-
scores_est
: Contains the factor score estimates. -
scores_se
: Contains the standard errors of the factor score estimates.
The content of these slots can be printed using the printTable()
method for S4 objects.
References
-
Estabrook, R. & Neale, M. C. (2013). A Comparison of Factor Score Estimation Methods in the Presence of Missing Data: Reliability and an Application to Nicotine Dependence. Multivariate Behavioral Research, 48, 1-27. doi:10.1080/00273171.2012.730072
-
Priestley, M. & Subba Rao, T. (1975). The Estimation of Factor Scores and Kalman Filtering For Discrete Parameter Stationary Processes. International Journal of Control, 21, 971-975. doi:10.1080/00207177508922050
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit bilinear spline latent growth curve model (fixed knots)
LIN_LGCM <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "linear",
intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1
)
getIndFS(model = LIN_LGCM@mxOutput, FS_type = "Regression")
# Fit bilinear spline latent growth curve model (random knots) with time-invariant covariates for
# mathematics development
## Fit the model
BLS_LGCM.TIC_f <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS",
intrinsic = TRUE, records = 1:9, growth_TIC = c("ex1", "ex2"),
res_scale = 0.1)
getIndFS(model = BLS_LGCM.TIC_f@mxOutput, FS_type = "Regression")
Fit a Latent Change Score Model with a Time-invariant Covariate (If Any)
Description
This function fits a latent change score model with or without time-invariant covariates to the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
Usage
getLCSM(
dat,
t_var,
y_var,
curveFun,
intrinsic = TRUE,
records,
growth_TIC = NULL,
starts = NULL,
res_scale = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions, and time-invariant covariates (TICs) if any. |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave. |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. Default is
|
records |
A numeric vector specifying indices of the study waves. |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. Default is |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A numeric value representing the scaling factor for the initial calculation of the residual variance. This
value should be between |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted latent change score model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., & Perera, R. A. (2023). Estimating Rate of Change for Nonlinear Trajectories in the Framework of Individual Measurement Occasions: A New Perspective on Growth Curves. Behavior Research Methods. doi:10.3758/s13428-023-02097-2
-
Liu, J. (2022). "Jenss–Bayley Latent Change Score Model With Individual Ratio of the Growth Acceleration in the Framework of Individual Measurement Occasions." Journal of Educational and Behavioral Statistics, 47(5), 507–543. doi:10.3102/10769986221099919
-
Grimm, K. J., Zhang, Z., Hamagami, F., & Mazzocco, M. (2013). "Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories." Multivariate Behavioral Research, 48(1), 117-143. doi:10.1080/00273171.2012.755111
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12
RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12
RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12
RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12
RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12
RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12
RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12
RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12
RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit nonparametric change score model for reading development
## Fit model
NonP_LCSM <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "nonparametric",
intrinsic = FALSE, records = 1:9, res_scale = 0.1
)
Construct An Object of mxModel for Latent Change Score Model with Time-invariant Covariates (If Any) To Be Evaluated
Description
This function builds up an object of mxModel for a Latent Change Score Model with user-specified functional form (including whether intrinsically nonlinear) with time-invariant covariates (if any).
Usage
getLCSM.mxModel(
dat,
t_var,
y_var,
curveFun,
intrinsic,
records,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions, and time-invariant covariates (TICs) if any. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A pre-optimized mxModel for a Latent Change Score Model.
Extract Point Estimates And Standard Errors of Latent Change Score Model with Time-invariant Covariates (If Any)
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a latent change score model with time-invariant covariates (if any)
Usage
getLCSM.output(model, curveFun, growth_TIC, names)
Arguments
model |
An object representing a fitted latent change score model. |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A data frame containing the point estimates and standard errors for parameters of a latent change score model with time-invariant covariates (if any).
Fit a Latent Growth Curve Model with Time-invariant Covariate (If Any)
Description
This function fits a latent growth curve model with or without time-invariant covariates to the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
Usage
getLGCM(
dat,
t_var,
y_var,
curveFun,
intrinsic = TRUE,
records,
growth_TIC = NULL,
starts = NULL,
res_scale = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions, and time-invariant covariates (TICs) if any. |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave. |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent growth curve
models are: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. Default is
|
records |
A numeric vector specifying indices of the study waves. |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. Default is |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A numeric value representing the scaling factor for the initial calculation of the residual variance. This
value should be between |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted latent growth curve model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., Perera, R. A., Kang, L., Kirkpatrick, R. M., & Sabo, R. T. (2021). "Obtaining Interpretable Parameters from Reparameterizing Longitudinal Models: Transformation Matrices between Growth Factors in Two Parameter Spaces". Journal of Educational and Behavioral Statistics. doi:10.3102/10769986211052009
-
Sterba, S. K. (2014). "Fitting Nonlinear Latent Growth Curve Models With Individually Varying Time Points". Structural Equation Modeling: A Multidisciplinary Journal, 21(4), 630-647. doi:10.1080/10705511.2014.919828
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit bilinear spline latent growth curve model (fixed knots)
BLS_LGCM_r <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1
)
# Fit bilinear spline latent growth curve model (random knots) with
# time-invariant covariates for mathematics development
## Define parameter names
paraBLS.TIC_LGCM.f <- c(
"alpha0", "alpha1", "alpha2", "alphag",
paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")),
"residuals", paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")),
paste0("mux", 1:2), paste0("phi", c("11", "12", "22")),
"mueta0", "mueta1", "mueta2", "mu_knot"
)
## Fit the model
BLS_LGCM.TIC_f <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = TRUE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1,
paramOut = TRUE, names = paraBLS.TIC_LGCM.f
)
## Output point estimate and standard errors
printTable(BLS_LGCM.TIC_f)
Construct An Object of mxModel for Latent Growth Curve Model with Time-invariant Covariates (If Any) To Be Evaluated
Description
his function builds up an object of mxModel for a latent growth curve model with user-specified functional form (including whether intrinsically nonlinear) with time-invariant covariates (if any).
Usage
getLGCM.mxModel(
dat,
t_var,
y_var,
curveFun,
intrinsic,
records,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions, and time-invariant covariates (TICs) if any. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent growth curve
models are: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list containing initial values for the free parameters, either takes the value passed from |
Value
A pre-optimized mxModel for a Latent Growth Curve Model.
Extract Point Estimates and Standard Errors of Latent Growth Curve Model with Time-invariant Covariates (If Any)
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a latent growth curve model with time-invariant covariates (if any)
Usage
getLGCM.output(model, growth_TIC, names)
Arguments
model |
An object representing a fitted latent growth curve model. |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A data frame containing the point estimates and standard errors for parameters of a latent growth curve model with time-invariant covariates (if any).
Perform Bootstrap Likelihood Ratio Test for Comparing Full and Reduced Models
Description
This function performs the likelihood ratio test (LRT) to compare a full model (an intrinsically nonlinear longitudinal model) with a corresponding parsimonious alternative (a non-intrinsically nonlinear longitudinal model). It also provides an option to perform bootstrapping for the comparison.
Usage
getLRT(full, reduced, boot = FALSE, rep = NA)
Arguments
full |
A fitted mxModel object for the full model. Specifically, this should be the |
reduced |
A fitted mxModel object for the reduced model. Specifically, this should be the |
boot |
A logical flag indicating whether to perform bootstrapping for the comparison. Default is |
rep |
An integer specifying the number of bootstrap replications if |
Value
A data frame containing the number of free parameters, estimated likelihood (-2ll), degrees of freedom, differences in log-likelihood and degrees of freedom, p-values, AIC, and BIC for both the full and reduced models.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Fit bilinear spline growth model with random knot (intrinsically nonlinear model)
BLS_LGCM_f <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = TRUE, records = 1:9, res_scale = 0.1)
# Fit bilinear spline growth model with fix knot (non-intrinsically nonlinear model)
BLS_LGCM_r <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = FALSE, records = 1:9, res_scale = 0.1)
# Likelihood ratio test
getLRT(full = BLS_LGCM_f@mxOutput, reduced = BLS_LGCM_r@mxOutput, boot = FALSE, rep = NA)
Compute Latent Kappa Coefficient for Agreement between Two Latent Label Sets
Description
This function calculates the latent kappa, a measure of agreement between two sets of latent categorical labels. It also computes the confidence interval and provides a qualitative interpretation of the agreement level.
Usage
getLatentKappa(label1, label2, conf.level = 0.95)
Arguments
label1 |
A factor vector representing the first set of latent categorical labels. |
label2 |
A factor vector representing the second set of latent categorical labels. |
conf.level |
A numeric value representing the confidence level for the confidence interval of the kappa statistic.
The default value is |
Value
An object of class KappaOutput
with the following slots:
-
kappa_value
: A string representing the kappa statistic along with its confidence interval. -
judgment
: A string describing the level of agreement, such as "Perfect Agreement", "Slight Agreement", etc.
The content of these slots can be printed using the printTable()
method for S4 objects.
References
-
Dumenci, L. (2011). The Psychometric Latent Agreement Model (PLAM) for Discrete Latent Variables Measured by Multiple Items. Organizational Research Methods, 14(1), 91-115. SAGE Publications. doi:10.1177/1094428110374649
-
Landis, J., & Koch, G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. doi:10.2307/2529310
-
Agresti, A. (2012). Models for Matched Pairs. In Categorical Data Analysis (pp. 413-454). Wiley.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
RMS_dat0$gx1 <- scale(RMS_dat0$INCOME)
RMS_dat0$gx2 <- scale(RMS_dat0$EDU)
## Fit a growth mixture model with no TICs
set.seed(20191029)
MIX_BLS_LGCM_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = NULL, tries = 10
)
## Membership of each individual from growth mixture model with no TICs
label1 <- getPosterior(
model = MIX_BLS_LGCM_r@mxOutput, nClass = 3, label = FALSE, cluster_TIC = NULL
)
set.seed(20191029)
## Fit a growth mixture model with growth TICs and cluster TICs
MIX_BLS_LGCM.TIC_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = c("gx1", "gx2"), y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = c("ex1", "ex2"), tries = 10
)
## Membership of each individual from growth mixture model with growth TICs and cluster TICs
label2 <- getPosterior(
model = MIX_BLS_LGCM.TIC_r@mxOutput, nClass = 3, label = FALSE,
cluster_TIC = c("gx1", "gx2")
)
## Calcualte the agreement between two sets of membership labels
getLatentKappa(label1 = label1@membership, label2 = label2@membership)
Compute Initial Values for Parameters of Longitudinal Mediation Models
Description
This function computes the initial values of the parameters for a longitudinal mediation model.
Usage
getMED.initial(
dat,
t_var,
y_var,
m_var,
x_type,
x_var,
curveFun,
records,
res_scale,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions for multiple longitudinal processes and a baseline predictor when applicable.
It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding longitudinal variable at each study wave. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding longitudinal variable. It takes the value passed from |
res_scale |
A numeric vector with each element representing the scaling factor for the initial calculation of the residual
variance. These values should be between |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal processes to calculate
the corresponding initial value. It takes the value passed from |
Value
A list containing the initial values for parameters related to growth factors and path coefficients of a longitudinal mediation model.
Get Factor Loadings for a Longitudinal Mediation Model with Specified Functional Curves
Description
This function specifies the factor loadings for a longitudinal mediation model with given functional form.
Usage
getMED.loadings(
t_var,
y_var,
m_var,
x_type,
x_var,
curveFun,
y_records,
m_records,
x_records = NULL
)
Arguments
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding longitudinal variable at each study wave. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: |
y_records |
A numeric vector specifying indices of the study waves for the outcome variable. It is the first vector
in |
m_records |
A numeric vector specifying indices of the study waves for the mediator variable. It is the second vector
in |
x_records |
A numeric vector specifying indices of the study waves for the predictor variable. Default value is |
Value
A list containing the specification of definition variables (i.e., individual measurement occasions) and factor loadings of a longitudinal mediation model.
Construct An Object of mxModel for Longitudinal Mediation Models To Be Evaluated
Description
This function builds up an object of mxModel for a longitudinal mediation model with user-specified functional form.
Usage
getMED.mxModel(
dat,
t_var,
y_var,
m_var,
x_type,
x_var,
curveFun,
records,
starts,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions for multiple longitudinal processes and a baseline predictor when applicable.
It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding longitudinal variable at each study wave. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding longitudinal variable. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal processes to calculate
the corresponding initial value. It takes the value passed from |
Value
A pre-optimized mxModel for a longitudinal mediation model.
Extract Point Estimates And Standard Errors of Longitudinal Mediation Model
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a longitudinal mediation model.
Usage
getMED.output(model, y_var, m_var, x_type, x_var, curveFun, names)
Arguments
model |
An object representing a fitted longitudinal mediation model. |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A data frame containing the point estimates and standard errors for parameters of a longitudinal mediation model.
Fit a Multivariate Latent Growth Curve Model or Multivariate Latent Change Score Model
Description
This function fits a multivariate latent growth curve model or a multivariate latent change score model with the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
Usage
getMGM(
dat,
t_var,
y_var,
curveFun,
intrinsic = TRUE,
records,
y_model,
starts = NULL,
res_scale = NULL,
res_cor = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions for multiple longitudinal outcomes. |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time variable for the corresponding outcome variable at each study wave. |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a particular outcome variable at each study wave. |
curveFun |
A string specifying the functional forms of the growth curve(s). Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. Default is
|
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for the corresponding outcome variable. |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A numeric vector with each element representing the scaling factor for the initial calculation of the residual
variance. These values should be between |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal outcomes to calculate
the corresponding initial value. By default, this is |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted multivariate latent growth curve model or a multivariate latent change score model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., & Perera, R. A. (2021). "Estimating Knots and Their Association in Parallel Bilinear Spline Growth Curve Models in the Framework of Individual Measurement Occasions," Psychological Methods (Advance online publication). doi:10.1037/met0000309
-
Blozis, S. A. (2004). "Structured Latent Curve Models for the Study of Change in Multivariate Repeated Measures," Psychological Methods, 9(3), 334-353. doi:10.1037/1082-989X.9.3.334
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Fit linear multivariate latent growth curve model
LIN_PLGCM_f <- getMGM(
dat = RMS_dat0, t_var = c("T", "T"), y_var = c("R", "M"), curveFun = "LIN",
intrinsic = FALSE, records = list(1:9, 1:9), y_model = "LGCM", res_scale = c(0.1, 0.1),
res_cor = 0.3
)
# Fit bilinear spline multivariate latent growth curve model (random knots)
## Define parameter names
paraBLS_PLGCM.f <- c(
"Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_knot",
paste0("Y_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "Y_res",
"Z_mueta0", "Z_mueta1", "Z_mueta2", "Z_knot",
paste0("Z_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "Z_res",
paste0("YZ_psi", c(c("00", "10", "20", "g0", "01", "11", "21", "g1",
"02", "12", "22", "g2", "0g", "1g", "2g", "gg"))),"YZ_res"
)
## Fit model
BLS_PLGCM_f <- getMGM(
dat = RMS_dat0, t_var = c("T", "T"), y_var = c("R", "M"), curveFun = "BLS", intrinsic = TRUE,
records = list(1:9, 1:9), y_model = "LGCM", res_scale = c(0.1, 0.1), res_cor = 0.3,
paramOut = TRUE, names = paraBLS_PLGCM.f
)
printTable(BLS_PLGCM_f)
Construct An Object of mxModel for Multivariate Latent Growth Curve Models or Multivariate Latent Change Score Models To Be Evaluated
Description
This function builds up an object of mxModel for a multivariate latent growth curve model or a multivariate latent change score model with user-specified functional form (including whether intrinsically nonlinear).
Usage
getMGM.mxModel(
dat,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions for multiple longitudinal outcomes. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A pre-optimized mxModel for a multivariate latent growth curve model or a multivariate latent change score model.
Extract Point Estimates And Standard Errors of Multivariate Latent Growth Curve Models Or Multivariate Latent Change Score Models
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a multivariate latent growth curve model or a multivariate latent change score model.
Usage
getMGM.output(model, y_var, records, curveFun, y_model, names)
Arguments
model |
An object representing a fitted multivariate latent growth curve model or latent change score model. |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A data frame containing the point estimates and standard errors for parameters of a multivariate latent growth curve model or a multivariate latent change score model.
Fit a Longitudinal Multiple Group Model
Description
This function fits a longitudinal multiple group model based on the specified sub-model. Supported submodels include:
Latent growth curve models,
Latent change score models,
Latent growth curve models or latent change score models with a time-varying covariate,
Multivariate latent growth curve models or multivariate latent change score models,
Longitudinal mediation models.
For the first three submodels, time-invariant covariates are allowed.
Usage
getMGroup(
dat,
grp_var,
sub_Model,
t_var,
records,
y_var,
curveFun,
intrinsic = NULL,
y_model = NULL,
m_var = NULL,
x_type = NULL,
x_var = NULL,
TVC = NULL,
decompose = NULL,
growth_TIC = NULL,
starts = NULL,
res_scale = NULL,
res_cor = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions for each longitudinal process, time-invariant covariates (TICs) if any, and a variable that indicates manifested group. |
grp_var |
A string specifying the column that indicates manifested classes. |
sub_Model |
A string that specifies the sub-model for manifested classes. Supported sub-models include |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave.
This applies when |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This
is applicable when |
curveFun |
A string specifying the functional forms of the growth curve(s). Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. By default, this is
|
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
By default, this is |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. By default, this is |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. Default is |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A list where each element is a (vector of) numeric scaling factor(s) for residual variance to calculate the
corresponding initial value for a latent class, between |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted longitudinal multiple group model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
# Re-baseline the data so that the estimated initial status is for the starting point of the study
RMS_dat0 <- RMS_dat
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit longitudinal multiple group model of bilinear spline functional form with fixed knot
MGroup_BLS_LGCM.TIC_f <- getMGroup(
dat = RMS_dat0, grp_var = "SEX", sub_Model = "LGCM", y_var = "M", t_var = "T",
records = 1:9, curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3)
)
# Fit longitudinal multiple group model of bilinear spline functional form with random knot
paraBLS.TIC_LGCM.f <- c(
"alpha0", "alpha1", "alpha2", "alphag",
paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")),
"residuals", paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")),
paste0("mux", 1:2), paste0("phi", c("11", "12", "22")),
"mueta0", "mueta1", "mueta2", "mu_knot"
)
set.seed(20191029)
MGroup_BLS_LGCM.TIC_f <- getMGroup(
dat = RMS_dat0, grp_var = "SEX", sub_Model = "LGCM", y_var = "M", t_var = "T",
records = 1:9, curveFun = "BLS", intrinsic = TRUE, res_scale = list(0.3, 0.3),
growth_TIC = c("ex1", "ex2"), tries = 10, paramOut = TRUE, names = paraBLS.TIC_LGCM.f
)
printTable(MGroup_BLS_LGCM.TIC_f)
Compute Initial Values for Parameters of Multiple-group Models
Description
This function computes the initial values for the parameters for a longitudinal multiple-group model. The supported submodels (i.e., class-specific models) include (1) latent growth curve models, (2) latent change score models, (3) latent growth curve models or latent change score models with a time varying covariate, (4) multivariate latent growth curve models or multivariate latent change score models, (5) longitudinal mediation models. For the first three submodels, time-invariant covariates are allowed.
Usage
getMGroup.initial(
dat,
nClass,
grp_var,
sub_Model,
t_var,
y_var,
curveFun,
records,
m_var,
x_var,
x_type,
TVC,
decompose,
growth_TIC,
res_scale,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes the value
passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave. This applies when
|
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
res_scale |
A list where each element is a (vector of) numeric scaling factor(s) for residual variance to calculate the
corresponding initial value for a latent class, between |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
Value
A list containing initial values for each class in the specified model.
Construct An Object of mxModel for Longitudinal Multiple Group Models To Be Evaluated
Description
This function builds up an object of mxModel for a longitudinal multiple group model with class-specific models and functional form (including whether intrinsically nonlinear).
Usage
getMGroup.mxModel(
dat,
nClass,
grp_var,
sub_Model,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
m_var,
x_var,
x_type,
TVC,
decompose,
growth_TIC,
starts,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes the value
passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave. This applies when
|
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value passed
from |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
Value
A pre-optimized mxModel for a longitudinal mixture model.
Extract Point Estimates And Standard Errors of Longitudinal Multiple Group Models
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a longitudinal multiple group model.
Usage
getMGroup.output(
model,
nClass,
sub_Model,
y_var,
curveFun,
x_type,
records,
growth_TIC,
y_model,
decompose,
names
)
Arguments
model |
An object representing a fitted mixture model. |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A dataframe containing point estimates and standard errors for the parameters of interest for a mixture model.
Fit a Longitudinal Mixture Model
Description
This function fits a longitudinal mixture model based on the specified sub-model. Supported submodels include:
Latent growth curve models,
Latent change score models,
Latent growth curve models or latent change score models with a time-varying covariate,
Multivariate latent growth curve models or multivariate latent change score models,
Longitudinal mediation models.
Time-invariant covariates are allowed for the first three submodels.
Usage
getMIX(
dat,
prop_starts,
sub_Model,
cluster_TIC = NULL,
t_var,
records,
y_var,
curveFun,
intrinsic = NULL,
y_model = NULL,
m_var = NULL,
x_type = NULL,
x_var = NULL,
TVC = NULL,
decompose = NULL,
growth_TIC = NULL,
starts = NULL,
res_scale = NULL,
res_cor = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. |
prop_starts |
A numeric vector of user-specified initial component proportions of latent classes. |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s) indicating cluster
formations. Default is |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave.
This applies when |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This
is applicable when |
curveFun |
A string specifying the functional forms of the growth curve(s). Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. By default, this is
|
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
By default, this is |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. By default, this is |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. Default is |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A list where each element is a (vector of) numeric scaling factor(s) for residual variance to calculate the
corresponding initial value for a latent class, between |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted longitudinal mixture model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., & Perera, R. A. (2022). Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates. Psychological Methods (Advance online publication). doi:10.1037/met0000436
-
Liu, J., & Perera, R. A. (2022). Extending Growth Mixture Model to Assess Heterogeneity in Joint Development with Piecewise Linear Trajectories in the Framework of Individual Measurement Occasions. Psychological Methods (Advance online publication). doi:10.1037/met0000500
-
Liu, J., & Perera, R. A. (2023). Estimating Rate of Change for Nonlinear Trajectories in the Framework of Individual Measurement Occasions: A New Perspective on Growth Curves. Behavior Research Methods. doi:10.3758/s13428-023-02097-2
-
Liu, J. (2023). Further Exploration of the Effects of Time-varying Covariate in Growth Mixture Models with Nonlinear Trajectories. Behavior Research Methods. doi:10.3758/s13428-023-02183-5
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
RMS_dat0$gx1 <- scale(RMS_dat0$INCOME)
RMS_dat0$gx2 <- scale(RMS_dat0$EDU)
# Fit longitudinal mixture group model of bilinear spline functional form with fixed knot
# (2 classes)
MIX_BLS_LGCM.TIC_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3)
)
# Fit longitudinal mixture group model of bilinear spline functional form with fixed knot
# (3 classes)
paraBLS.TIC_LGCM.r <- c(
"alpha0", "alpha1", "alpha2", "knot",
paste0("psi", c("00", "01", "02", "11", "12", "22")), "residuals",
paste0("beta1", 0:2), paste0("beta2", 0:2),
paste0("mux", 1:2), paste0("phi", c("11", "12", "22")),
"mueta0", "mueta1", "mueta2"
)
set.seed(20191029)
MIX_BLS_LGCM.TIC_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = c("gx1", "gx2"), y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = c("ex1", "ex2"), tries = 10, paramOut = TRUE,
names = paraBLS.TIC_LGCM.r
)
printTable(MIX_BLS_LGCM.TIC_r)
Compute Initial Values for Parameters of Mixture Models
Description
This function computes the initial values for the parameters for a longitudinal mixture model. The supported submodels (i.e., class-specific models) include (1) latent growth curve models, (2) latent change score models, (3) latent growth curve models or latent change score models with a time varying covariate, (4) multivariate latent growth curve models or multivariate latent change score models, (5) longitudinal mediation models. For the first three submodels, time-invariant covariates are allowed.
Usage
getMIX.initial(
dat,
nClass,
prop_starts,
sub_Model,
cluster_TIC,
t_var,
records,
y_var,
curveFun,
m_var,
x_var,
x_type,
TVC,
decompose,
growth_TIC,
res_scale,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes the value
passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
prop_starts |
A numeric vector of user-specified initial component proportions of latent classes. It takes the value passed from
|
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s) indicating cluster
formations. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave. This applies when
|
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
res_scale |
A list where each element is a (vector of) numeric scaling factor(s) for residual variance to calculate the
corresponding initial value for a latent class, between |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
Value
A list containing initial values for each class in the specified model.
Construct An Object of mxModel for Longitudinal Mixture Models To Be Evaluated
Description
This function builds up an object of mxModel for a mixture model with user-specified number of latent classes, class- specific models and functional form (including whether intrinsically nonlinear).
Usage
getMIX.mxModel(
dat,
nClass,
sub_Model,
cluster_TIC,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
m_var,
x_var,
x_type,
TVC,
decompose,
growth_TIC,
starts,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes the value
passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s) indicating cluster
formations. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable for each study wave. This applies when
|
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value passed
from |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
m_var |
A string that specifies the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
TVC |
A string that specifies the prefix of the column names corresponding to the time-varying covariate at each time
point. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
res_cor |
A list where each element is a (vector of) numeric initial value(s) for residual correlation in each class. It
needs to be specified if the sub_Model is |
Value
A pre-optimized mxModel for a longitudinal mixture model.
Extract Point Estimates And Standard Errors of Longitudinal Mixture Models
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a mixture model.
Usage
getMIX.output(
model,
nClass,
sub_Model,
cluster_TIC,
y_var,
curveFun,
x_type,
records,
growth_TIC,
y_model,
decompose,
names
)
Arguments
model |
An object representing a fitted mixture model. |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
sub_Model |
A string that specifies the sub-model for latent classes. Supported sub-models include |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s) indicating cluster
formations. It takes the value passed from |
y_var |
A string defining the prefix of the column names corresponding to the outcome variable for each study wave. This is applicable
when |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
records |
A numeric vector denoting the indices of the observed study waves. This applies when |
growth_TIC |
A string or character vector of column names of time-invariant covariate(s) accounting for the variability
of growth factors if any. It takes the value passed from |
y_model |
A string that specifies how to fit longitudinal outcomes. Supported values are |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A dataframe containing point estimates and standard errors for the parameters of interest for a mixture model.
Get Factor Loadings for a Mixture Model or Multiple Group Model with Longitudinal Mediation Model with Specified Functional Curves as Submodels
Description
This function specifies the factor loadings for a mixture model with longitudinal mediation model with given functional form as submodels
Usage
getMIX_MED.loadings(
nClass,
t_var,
y_var,
m_var,
x_var,
x_type,
curveFun,
y_records,
m_records,
x_records = NULL
)
Arguments
nClass |
An integer specifying the number of classes for the mixture model or multiple group model. It takes the value passed
from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time variable for the
corresponding longitudinal variable at each study wave. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. It takes the value
passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: "linear" (or "LIN"),
and "bilinear spline" (or "BLS"). It takes the value passed from |
y_records |
A numeric vector specifying indices of the study waves for the outcome variable. It is the first vector
in |
m_records |
A numeric vector specifying indices of the study waves for the mediator variable. It is the second vector
in |
x_records |
A numeric vector specifying indices of the study waves for the predictor variable. Default value is |
Value
A list containing the specification of definition variables (i.e., individual measurement occasions) and factor loadings of a longitudinal mediation model.
Get Additional Parameters Related to Interval-specific Slopes, Interval-specific Changes and Values of Change-from- baseline for Mixture Model with Multivariate Latent Change Score Models as Submodels
Description
This function derives additional parameters for mixture model with multivariate latent change score models as submodels. It specifies the means and variances of interval-specific slopes, interval-specific changes, and values of change-from- baseline.
Usage
getMIX_MULTI.addpara(
dat,
nClass,
t_var,
records,
y_var,
curveFun,
intrinsic = NULL,
starts
)
Arguments
dat |
Data frame. Contains the observed variables, including repeated measurements and occasions, and covariates if any. It takes the value passed from 'getMIX()'. |
nClass |
Numeric. Indicates the number of latent classes. It takes the value passed from 'getMIX()'. |
t_var |
String. Prefix of the column names corresponding to the time variable at each time point. It takes the value passed from 'getMIX()'. |
records |
Numeric vector. Indices of the observed time points. It takes the value passed from 'getMIX()'. |
y_var |
String. Prefix of the column names corresponding to the outcome variable at each time point. It takes the value passed from 'getMIX()'. |
curveFun |
String. The functional form of the growth curve. Supported options include: "linear" (or "LIN"), "quadratic" (or "QUAD"), "negative exponential" (or "EXP"), "Jenss-Bayley" (or "JB"), "bilinear spline" (or "BLS"), and "nonparametric" (or "NonP"). It takes the value passed from 'getMIX()'. |
intrinsic |
Logical. Whether an intrinsically nonlinear longitudinal model is built up. It takes the value passed from 'getMIX()'. |
starts |
A list of initial values for free parameters, either takes the value passed from 'getMIX()' or derived by the helper function 'getMIX.initial()'. |
Value
A list containing the specification of the means and variances of interval-specific slopes, interval-specific changes, and values of change-from-baseline for a mixture model with multivariate latent change score models as submodels.
Get Factor Loadings for a Mixture Model with MGM as Submodels
Description
This function specifies the factor loadings for a mixture model with MGM as submodels. The longitudinal outcomes are fit by Latent Growth Curve Models or a Latent Change Score Models.
Usage
getMIX_MULTI.loadings(
nClass,
y_model,
t_var,
y_var,
curveFun,
intrinsic = NULL,
records
)
Arguments
nClass |
A numeric value to indicate the number of latent classes. |
y_model |
A character string specifying how to fit the longitudinal outcome. Supported values are "LGCM" and "LCSM". It takes the value passed from 'getMIX()'. |
t_var |
t_var A character vector where each element represents a prefix for column names corresponding to the time variables for the respective longitudinal process. It takes the value passed from 'getMIX()'. |
y_var |
A character vector where each element represents a prefix for column names corresponding to the outcome variables for the respective longitudinal process. It takes the value passed from 'getMIX()'. |
curveFun |
The specified functional form of the growth curve. Supported options include: "linear" (or "LIN"), "quadratic" (or "QUAD"), "negative exponential" (or "EXP"), "Jenss-Bayley" (or "JB"), "bilinear spline" (or "BLS"), and "nonparametric" (or "NonP"). It takes the value passed from 'getMIX()'. |
intrinsic |
A boolean flag for whether an intrinsically nonlinear longitudinal model is built up. It takes the value passed from 'getMIX()'. |
records |
A list of numeric vectors where each vector contains indices of the observed time points for the respective longitudinal processes. It takes the value passed from 'getMIX()'. |
Value
A list containing the specification of definition variables (i.e., individual measurement occasions) and factor loadings of multivariate longitudinal outcomes.
Get the Time-Varying Covariate (TVC) Information for a Mixture Model or Multiple Group Model with a Time-varying Covariate
Description
This function constructs the OpenMx model paths and parameters for a TVC and its relationship with the parameters related to growth factors of a longitudinal outcome.
Usage
getMIX_TVC.info(nClass, y_var, records, growth_TIC, TVC, decompose, starts)
Arguments
nClass |
An integer specifying the number of classes for the mixture model or multiple group model. It takes the value
passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. Default is |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave. It
takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list with each sub-list containing a list of OpenMx paths and parameters for the TVC and an OpenMx path for the state effect of the TVC on the corresponding longitudinal outcome.
Get Additional Parameters Related to Interval-specific Slopes, Interval-specific Changes and Values of Change-from- baseline for a Mixture Model or Multiple Group Model with Latent Change Score Models for Longitudinal Outcome
Description
This function derives additional parameters for a mixture model with latent change score models as submodels. In particular, it specifies the means and variances of interval-specific slopes, interval-specific changes, and values of change-from-baseline.
Usage
getMIX_UNI.addpara(
dat,
nClass,
curveFun,
intrinsic,
t_var,
records,
growth_TIC,
decompose,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes
the value passed from |
nClass |
An integer specifying the number of classes for the mixture model or multiple group model. It takes the value
passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing
to the variability of growth factors if any. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list containing the specification of the means and variances of interval-specific slopes, interval- specific changes, and values of change-from-baseline for latent change score models.
Get Factor Loadings for a Mixture Model or Multiple Group Model with Univariate Longitudinal Outcome
Description
This function specifies the factor loadings for a mixture model with a univariate longitudinal outcome. The longitudinal outcome is fit by a Latent Growth Curve Model or a Latent Change Score Model.
Usage
getMIX_UNI.loadings(
nClass,
y_model,
t_var,
records,
y_var,
curveFun,
intrinsic
)
Arguments
nClass |
An integer specifying the number of classes for the mixture model or multiple group model. It takes the value
passed from |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
Value
A list containing the specification of definition variables (i.e., individual time points for the latent growth curve models, and individual time points and individual time lags (intervals) between adjacent time points for latent change score models) and factor loadings of a univariate longitudinal outcome.
Get Additional Parameters Related to Interval-specific Slopes, Interval-specific Changes and Values of Change-from- baseline for Multivariate Latent Change Score Models
Description
This function derives additional parameters for multivariate latent change score models. It specifies the means and variances of interval-specific slopes, interval-specific changes, and values of change-from-baseline.
Usage
getMULTI.addpara(dat, t_var, y_var, curveFun, intrinsic, records, starts)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions for multiple longitudinal outcomes. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list containing the specification of the means and variances of interval-specific slopes, interval-specific changes, and values of change-from-baseline for multivariate latent change score models.
Compute Initial Values for Parameters of Multivariate Latent Growth Curve Models or Latent Change Score Models
Description
This function computes the initial values for the parameters for a multivariate latent growth curve model or a latent change score model.
Usage
getMULTI.initial(dat, t_var, y_var, curveFun, records, res_scale, res_cor)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions for multiple longitudinal outcomes. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
res_scale |
A numeric vector with each element representing the scaling factor for the initial calculation of the residual
variance. These values should be between |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal outcomes to calculate
the corresponding initial value. It takes the value passed from |
Value
A list containing the initial values for the parameters in the multivariate latent growth curve model or a latent change score model growth curve model.
Get Factor Loadings for a Multivariate Longitudinal Outcomes with Specified Functional Curves
Description
This function specifies the factor loadings for a multivariate longitudinal outcomes with a given functional form. The longitudinal outcomes are fit by Latent Growth Curve Models or a Latent Change Score Models.
Usage
getMULTI.loadings(y_model, t_var, y_var, curveFun, intrinsic, records)
Arguments
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
Value
A list containing the specification of definition variables (i.e., individual time points for the latent growth curve models, and individual time points and individual time lags (intervals) between adjacent time points for latent change score models) and factor loadings of a multivariate longitudinal outcomes.
Fit a Longitudinal Mediation Model
Description
This function fits a longitudinal mediation model to the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
Usage
getMediation(
dat,
t_var,
y_var,
m_var,
x_type,
x_var,
curveFun,
records,
starts = NULL,
res_scale = NULL,
res_cor = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions for multiple longitudinal processes and a baseline predictor when applicable. |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time variable for the corresponding longitudinal variable at each study wave. |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave. |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
x_var |
A string specifying the baseline predictor if |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for the corresponding longitudinal variable. |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A numeric vector with each element representing the scaling factor for the initial calculation of the residual
variance. These values should be between |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal processes to calculate
the corresponding initial value. By default, this is |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted longitudinal mediation model. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., & Perera, R.A. (2022). Assessing Mediational Processes Using Piecewise Linear Growth Curve Models with Individual Measurement Occasions. Behavior Research Methods (Advance online publication). doi:10.3758/s13428-022-01940-2
-
MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. Taylor & Francis Group/Lawrence Erlbaum Associates.
-
Cheong, J., Mackinnon, D. P., & Khoo, S. T. (2003). Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling. Structural equation modeling: a multidisciplinary journal, 10(2), 238-262. doi:10.1207/S15328007SEM1002_5
-
Soest, T., & Hagtvet, K. A. (2011). Mediation Analysis in a Latent Growth Curve Modeling Framework. Structural equation modeling: a multidisciplinary journal, 18(2), 289-314. doi:10.1080/10705511.2011.557344
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
# Example 1: Baseline predictor, linear functional form
## Fit model
set.seed(20191029)
Med2_LGCM_LIN <- getMediation(
dat = RMS_dat0, t_var = rep("T", 2), y_var = "M", m_var = "R", x_type = "baseline",
x_var = "ex1", curveFun = "LIN", records = list(1:9, 1:9), res_scale = c(0.1, 0.1),
res_cor = 0.3
)
# Example 2: Longitudinal predictor, bilinear spline functional form
## Define parameter names
paraMed3_BLS <- c(
"muetaX1", "muetaXr", "muetaX2", "mugX",
paste0("psi", c("X1X1", "X1Xr", "X1X2", "XrXr", "XrX2", "X2X2")),
"alphaM1", "alphaMr", "alphaM2", "mugM",
paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"),
"alphaY1", "alphaYr", "alphaY2", "mugY",
paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"),
paste0("beta", c("X1Y1", "X1Yr", "X1Y2", "XrYr", "XrY2", "X2Y2",
"X1M1", "X1Mr", "X1M2", "XrMr", "XrM2", "X2M2",
"M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")),
"muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2",
paste0("mediator", c("111", "11r", "112", "1rr", "1r2",
"122", "rr2", "r22", "rrr", "222")),
paste0("total", c("11", "1r", "12", "rr", "r2", "22")),
"residualsX", "residualsM", "residualsY", "residualsMX", "residualsYX", "residualsYM"
)
## Fit model
set.seed(20191029)
Med3_LGCM_BLS <- getMediation(
dat = RMS_dat0, t_var = rep("T", 3), y_var = "S", m_var = "M", x_type = "longitudinal",
x_var = "R", curveFun = "bilinear spline", records = list(2:9, 1:9, 1:9),
res_scale = c(0.1, 0.1, 0.1), res_cor = c(0.3, 0.3), tries = 10, paramOut = TRUE,
names = paraMed3_BLS
)
printTable(Med3_LGCM_BLS)
Compute Posterior Probabilities, Cluster Assignments, and Model Entropy for a Longitudinal Mixture Model
Description
This function computes posterior probabilities, cluster assignments, and model entropy for a given mixture model with a predefined number of classes. If the true labels are available, it can also compute the model accuracy.
Usage
getPosterior(model, nClass, label = FALSE, cluster_TIC = NULL)
Arguments
model |
A fitted mxModel object. Specifically, this should be the |
nClass |
An integer representing the predefined number of latent classes in the model. |
label |
A logical value indicating whether the data contains true labels, which are often available in a simulated data set. Default is FALSE. |
cluster_TIC |
A string or character vector representing the column name(s) for time-invariant covariate(s)
indicating cluster formations. Default is |
Value
An object of class postOutput
. Depending on the label
argument, the object may contain the following slots:
-
prob
: A matrix of posterior probabilities. -
membership
: A vector indicating class membership based on maximum posterior probability. -
entropy
: The entropy of the model, a measure of uncertainty in class assignment. -
accuracy
(optional): Iflabel = TRUE
, the model's accuracy based on true labels.
The content of these slots can be printed using the printTable()
method for S4 objects.
References
-
Peugh, J., & Fan, X. (2015). Enumeration Index Performance in Generalized Growth Mixture Models: A Monte Carlo Test of Muthén's (2003) Hypothesis. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 115-131. Routledge. doi:10.1080/10705511.2014.919823
-
Lubke, G., & Muthén, B.O. (2007). Performance of Factor Mixture Models as a Function of Model Size, Covariate Effects, and Class-Specific Parameters. Structural Equation Modeling: A Multidisciplinary Journal, 14(1), 26-47. Routledge. doi:10.1080/10705510709336735
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
# Re-baseline the data so that the estimated initial status is for the starting point of the study
RMS_dat0 <- RMS_dat
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
RMS_dat0$gx1 <- scale(RMS_dat0$INCOME)
RMS_dat0$gx2 <- scale(RMS_dat0$EDU)
# Fit longitudinal mixture group model of bilinear spline functional form with fixed knot but no
# cluster TICs or growth TICs
set.seed(20191029)
MIX_BLS_LGCM_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9, curveFun = "BLS",
intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3), growth_TIC = NULL, tries = 10
)
label1 <- getPosterior(
model = MIX_BLS_LGCM_r@mxOutput, nClass = 3, label = FALSE, cluster_TIC = NULL
)
# Fit longitudinal mixture group model of bilinear spline functional form with fixed knot, cluster
# TICs, and growth TICs
set.seed(20191029)
MIX_BLS_LGCM.TIC_r <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM",
cluster_TIC = c("gx1", "gx2"), y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3, 0.3),
growth_TIC = c("ex1", "ex2"), tries = 10
)
label2 <- getPosterior(
model = MIX_BLS_LGCM.TIC_r@mxOutput, nClass = 3, label = FALSE, cluster_TIC = c("gx1", "gx2")
)
Summarize Model Fit Statistics for Fitted Models
Description
This function summarizes the model fit statistics for a list of fitted models. The summary includes the number of parameters, estimated likelihood (-2ll), AIC, BIC, and other relevant statistics.
Usage
getSummary(model_list, HetModels = FALSE)
Arguments
model_list |
A list of fitted mxModel objects. Specifically, each element of the list should be the |
HetModels |
A logical flag indicating whether a mixture model or a multiple group model is included in the list.
If set to |
Value
A data frame summarizing model fit statistics (number of parameters, estimated likelihood, AIC, BIC, etc.) for each model.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Fit bilinear spline growth model with fix knot
## Single group model
BLS_LGCM1 <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, res_scale = 0.1
)
getSummary(model_list = list(BLS_LGCM1@mxOutput), HetModels = FALSE)
## Mixture model with two latent classes
set.seed(20191029)
BLS_LGCM2 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM", cluster_TIC = NULL,
y_var = "M", t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3), growth_TIC = NULL, tries = 10
)
## Mixture model with three latent classes
set.seed(20191029)
BLS_LGCM3 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM", cluster_TIC = NULL,
y_var = "M", t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3, 0.3), growth_TIC = NULL, tries = 10
)
getSummary(model_list = list(BLS_LGCM1@mxOutput, BLS_LGCM2@mxOutput, BLS_LGCM3@mxOutput),
HetModels = TRUE)
Get the Time-Varying Covariate (TVC) Information for a One-group Longitudinal Model with Time-varying Covariate
Description
This function constructs the OpenMx model paths and parameters for a TVC and its relationship with the parameters related to growth factors of a longitudinal outcome.
Usage
getTVC.info(y_var, records, growth_TIC, TVC, decompose, starts)
Arguments
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. Default is |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave. It
takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list containing two elements: X_PARAM and KAPPA. X_PARAM is a list of OpenMx paths and parameters for the TVC, and KAPPA is an OpenMx path for the temporal effect of the TVC on the corresponding longitudinal outcome.
Compute Initial Values for Parameters of Latent Growth Curve Models or Latent Change Score Models with a Time-varying Covariate and Time-invariant Covariates (if any)
Description
This function computes the initial values of the parameters for a latent growth curve model or a latent change score model with a time-varying covariate and time-invariant covariates (if any).
Usage
getTVC.initial(
dat,
t_var,
y_var,
curveFun,
records,
growth_TIC,
TVC,
decompose,
res_scale,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements (for the longitudinal outcome and time-varying covariates), occasions, and time-invariant covariates
(TICs) if any. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave. It takes
the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. It
takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. It takes the value passed from |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave.
It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
res_scale |
A numeric value or numeric vector. For a model with |
res_cor |
A numeric value. When |
Value
A list containing the initial values for parameters related to growth factors, TVC, TICs (if any), and path coefficients (if any) for a latent growth curve model or a latent change score model with a time-varying covariate and time-invariant covariates (if any).
Construct An Object of mxModel for Latent Growth Curve Models or Latent Change Score Models with a Time Varying Covariate and Time-invariant Covariates (If Any) To Be Evaluated
Description
This function builds up an object of mxModel for a latent growth curve model or latent change score model with user-specified functional form (including whether intrinsically nonlinear), time-varying covariate, and with time-invariant covariates (if any).
Usage
getTVC.mxModel(
dat,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
TVC,
decompose,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements (for the longitudinal outcome and time-varying covariates), occasions, and time-invariant covariates
(TICs) if any. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from
|
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave.
It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A pre-optimized mxModel for a latent growth curve model or a latent change score model with a time-varying covariate and time-invariant covariates (if any).
Extract Point Estimates And Standard Errors of Latent Growth Curve Model Or Latent Change Score Model with a Time-varying Covariate and Time-invariant Covariates (If Any)
Description
This function computes and returns a data frame containing point estimates and standard errors for the parameters of a latent growth curve model or a latent change score model with a time-varying covariate and time-invariant covariates (if any)
Usage
getTVC.output(model, curveFun, records, y_model, decompose, growth_TIC, names)
Arguments
model |
An object representing a fitted latent growth curve model or a latent change score model with a TVC.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from
|
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. It takes the value passed from |
names |
A character vector specifying parameter names. It takes the value passed from |
Value
A data frame containing the point estimates and standard errors for parameters of a latent growth curve model or a latent change score model with a time-varying covariate and time-invariant covariates (if any).
Fit a Latent Growth Curve Model or Latent Change Score Model with Time-varying and Time-invariant Covariates
Description
This function fits a latent growth curve model or latent change score model with a time-varying covariate and potential time-invariant covariates to the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
Usage
getTVCmodel(
dat,
t_var,
y_var,
curveFun,
intrinsic = TRUE,
records,
y_model,
TVC,
decompose,
growth_TIC = NULL,
starts = NULL,
res_scale = NULL,
res_cor = NULL,
tries = NULL,
OKStatus = 0,
jitterD = "runif",
loc = 1,
scale = 0.25,
paramOut = FALSE,
names = NULL
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements (for the longitudinal outcome and time-varying covariates), occasions, and time-invariant covariates (TICs) if any. |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave. |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. Default is
|
records |
A numeric vector specifying the indices of the observed study waves. |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave. |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. Default is |
starts |
A list containing initial values for the parameters. Default is |
res_scale |
A numeric value or numeric vector. For a model with |
res_cor |
A numeric value. When |
tries |
An integer specifying the number of additional optimization attempts. Default is |
OKStatus |
An integer (vector) specifying acceptable status codes for convergence. Default is |
jitterD |
A string specifying the distribution for jitter. Supported values are: |
loc |
A numeric value representing the location parameter of the jitter distribution. Default is |
scale |
A numeric value representing the scale parameter of the jitter distribution. Default is |
paramOut |
A logical flag indicating whether to output the parameter estimates and standard errors. Default is |
names |
A character vector specifying parameter names. Default is |
Value
An object of class myMxOutput
. Depending on the paramOut
argument, the object may contain the following slots:
-
mxOutput
: This slot contains the fitted latent growth curve model or latent change score model with a time-varying covariate. A summary of this model can be obtained using theModelSummary()
function. -
Estimates
(optional): IfparamOut = TRUE
, a data frame with parameter estimates and standard errors. The content of this slot can be printed using theprintTable()
method for S4 objects.
References
-
Liu, J., & Perera, R. A. (2023). Estimating Rate of Change for Nonlinear Trajectories in the Framework of Individual Measurement Occasions: A New Perspective on Growth Curves. Behavior Research Methods. doi:10.3758/s13428-023-02097-2
-
Liu, J. (2022). "Decomposing Impact on Longitudinal Outcome of Time-varying Covariate into Baseline Effect and Temporal Effect." arXiv. https://arxiv.org/abs/2210.16916
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12
RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12
RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12
RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12
RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12
RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12
RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12
RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12
RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Standardize reading ability over time with its baseline value
BL_mean <- mean(RMS_dat0[, "R1"])
BL_var <- var(RMS_dat0[, "R1"])
RMS_dat0$Rs1 <- (RMS_dat0$R1 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs2 <- (RMS_dat0$R2 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs3 <- (RMS_dat0$R3 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs4 <- (RMS_dat0$R4 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs5 <- (RMS_dat0$R5 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs6 <- (RMS_dat0$R6 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs7 <- (RMS_dat0$R7 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs8 <- (RMS_dat0$R8 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs9 <- (RMS_dat0$R9 - BL_mean)/sqrt(BL_var)
# Fit bilinear spline latent growth curve model (fixed knot) with a time-varying
# reading ability for mathematics development
BLS_TVC_LGCM1 <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 0, growth_TIC = NULL,
res_scale = 0.1
)
# Fit negative exponential latent growth curve model (random ratio) with a
# decomposed time-varying reading ability and time-invariant covariates for
# mathematics development
paraEXP_LGCM3.f <- c(
"Y_alpha0", "Y_alpha1", "Y_alphag",
paste0("Y_psi", c("00", "01", "0g", "11", "1g", "gg")), "Y_residuals",
"X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")),
paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals",
paste0("betaTIC", c(0:1, "g")), paste0("betaTIC", c(0:1, "g")),
paste0("betaTVC", c(0:1, "g")),
"muTIC1", "muTIC2", "phiTIC11", "phiTIC12", "phiTIC22",
"Y_mueta0", "Y_mueta1", "Y_mu_slp_ratio",
"covBL1", "covBL2", "kappa", "Cov_XYres")
set.seed(20191029)
EXP_TVCslp_LGCM3.f <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "EXP", intrinsic = TRUE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 1,
growth_TIC = c("ex1", "ex2"), res_scale = c(0.1, 0.1),
res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraEXP_LGCM3.f
)
printTable(EXP_TVCslp_LGCM3.f)
Derive Individual Growth Factors for Latent Growth Curve Models or Latent Change Score Models with Time-Invariant Covariates (If Any)
Description
This function derives individual growth factors for the specified latent growth curve model or latent change score model from raw data. These individual growth factors help further compute initial values for parameters related to growth factors, time-invariant covariates (if any), and path coefficients (if any).
Usage
getUNI.GF(dat_traj, dat_time, nT, curveFun)
Arguments
dat_traj |
A data frame containing the records for the repeated measurements. |
dat_time |
A data frame containing the records for measurement occasions associated with the repeated measurements. |
nT |
An integer representing the number of repeated measurements. |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
Value
A data frame containing the derived individual growth factors from the raw data.
Get Additional Parameters Related to Interval-specific Slopes, Interval-specific Changes and Values of Change-from-baseline for Latent Change Score Models for Longitudinal Outcome
Description
This function derives additional parameters for latent change score models. In particular, it specifies the means and variances of interval-specific slopes, interval-specific changes, and values of change- from-baseline.
Usage
getUNI.addpara(
dat,
curveFun,
intrinsic = NULL,
t_var,
records,
growth_TIC,
decompose,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables
with repeated measurements and occasions, and time-invariant covariates (TICs) if any. It takes the value passed from
|
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing
to the variability of growth factors if any. It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
starts |
A list containing initial values for the parameters, either takes the value passed from |
Value
A list containing the specification of the means and variances of interval-specific slopes, interval-specific changes, and values of change-from-baseline for latent change score models.
Compute Initial Values for Parameters of Latent Growth Curve Models or Latent Change Score Models with Time-invariant Covariates (If Any)
Description
This function computes the initial values of the parameters for a latent growth curve model or a latent change score model with time-invariant covariates (if any).
Usage
getUNI.initial(dat, t_var, y_var, curveFun, records, growth_TIC, res_scale)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions, and time-invariant covariates (TICs) if any. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent growth curve models include:
|
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
res_scale |
A numeric value representing the scaling factor for the initial calculation of the residual variance. This
value should be between |
Value
A list containing the initial values for parameters related to growth factors, TICs (if any), and path coefficients (if any) of a latent growth curve model or a latent change score model. The returned list has the following structure:
- Y_starts:
A list containing three elements:
- alpha0 or mean0:
Depends on whether
growth_TIC
is provided,- psi_r or psi0:
Depends on whether
growth_TIC
is provided,- residuals.
- TIC_starts:
Only provided when
growth_TIC
is not NULL.- beta0:
Only provided when
growth_TIC
is not NULL.
Each of these elements is a numeric vector or matrix containing the initial parameter estimates.
Get Factor Loadings for a Univariate Longitudinal Outcome with Specified Functional Curves
Description
This function specifies the factor loadings for a univariate longitudinal outcome with given functional form. The longitudinal outcome is fit by a Latent Growth Curve Model or a Latent Change Score Model.
Usage
getUNI.loadings(y_model, t_var, y_var, curveFun, intrinsic, records)
Arguments
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
Value
A list containing the specification of definition variables (i.e., individual time points for the latent growth curve models, and individual time points and individual time lags (intervals) between adjacent time points for latent change score models) and factor loadings of a univariate longitudinal outcome.
Define Latent Change Score Models as Class-specific Models (Submodels) for a Longitudinal Mixture Model
Description
This function defines latent change score models as class-specific models (submodels) for a longitudinal mixture model.
Usage
getsub.LCSM_l(
dat,
nClass,
t_var,
records,
y_var,
curveFun,
intrinsic,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Latent Change Score Models as Class-specific Models (Submodels) for a Longitudinal Multiple Group Model
Description
This function defines latent change score models as class-specific models (submodels) for a longitudinal multiple group model.
Usage
getsub.LCSM_m(
dat,
nClass,
grp_var,
t_var,
y_var,
curveFun,
intrinsic,
records,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent change score
models include: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Latent Growth Curve Models as Class-specific Models (Submodels) for a Longitudinal Mixture Model
Description
This function defines latent growth curve models as class-specific models (submodels) for a longitudinal mixture model.
Usage
getsub.LGCM_l(
dat,
nClass,
t_var,
records,
y_var,
curveFun,
intrinsic,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent growth curve
models are: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Latent Growth Curve Models as Class-specific Models (Submodels) for a Longitudinal Multiple Group Model
Description
This function defines latent growth curve models as class-specific models (submodels) for a longitudinal multiple group model.
Usage
getsub.LGCM_m(
dat,
nClass,
grp_var,
t_var,
y_var,
curveFun,
intrinsic,
records,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for latent growth curve
models are: |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the value
passed from |
records |
A numeric vector specifying indices of the study waves. It takes the value passed from |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the
variability of growth factors if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Longitudinal Mediation Models as Class-specific Models (Submodels) for a Longitudinal Mixture Model
Description
This function defines longitudinal mediation models as class-specific models (submodels) for a longitudinal mixture model.
Usage
getsub.MED_l(
dat,
nClass,
t_var,
records,
y_var,
curveFun,
m_var,
x_var,
x_type,
starts,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes
the value passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed
from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time variable for the
corresponding longitudinal variable at each study wave. It takes the value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding longitudinal variable. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. It takes the value
passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: "linear" (or "LIN"),
and "bilinear spline" (or "BLS"). It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
starts |
A list of initial values for the parameters, either takes the value passed from |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal processes to calculate
the corresponding initial value. It takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Longitudinal Mediation Models as Class-specific Models (Submodels) for a Longitudinal Multiple Group Model
Description
This function defines longitudinal mediation models as class-specific models (submodels) for a longitudinal multiple group model.
Usage
getsub.MED_m(
dat,
nClass,
grp_var,
t_var,
y_var,
curveFun,
records,
m_var,
x_var,
x_type,
starts,
res_cor
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any. It takes
the value passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed
from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time variable for the
corresponding longitudinal variable at each study wave. It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave. It takes the value
passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options include: "linear" (or "LIN"),
and "bilinear spline" (or "BLS"). It takes the value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding longitudinal variable. It takes the value passed from |
m_var |
A string specifying the prefix of the column names corresponding to the mediator variable at each study wave.
It takes the value passed from |
x_var |
A string specifying the baseline predictor if |
x_type |
A string indicating the type of predictor variable used in the model. Supported values are |
starts |
A list of initial values for the parameters, either takes the value passed from |
res_cor |
A numeric value or vector for user-specified residual correlation between any two longitudinal processes to calculate
the corresponding initial value. It takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Multivariate Latent Growth Curve Models or Multivariate Latent Change Score Models as Class-specific Models (Submodels) for a Longitudinal Mixture Model
Description
This function defines multivariate latent growth curve models or multivariate latent change score models as class- specific models (submodels) for a longitudinal mixture model.
Usage
getsub.MGM_l(
dat,
nClass,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define Multivariate Latent Growth Curve Models or Multivariate Latent Change Score Models as Class-specific Models (Submodels) for a Longitudinal Multiple Group Model
Description
This function defines multivariate latent growth curve models or multivariate latent change score models as class- specific models (submodels) for a longitudinal multiple group model.
Usage
getsub.MGM_m(
dat,
nClass,
grp_var,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
t_var |
A vector of strings, with each element representing the prefix for column names related to the time
variable for the corresponding outcome variable at each study wave. It takes the value passed from |
y_var |
A vector of strings, with each element representing the prefix for column names corresponding to a
particular outcome variable at each study wave. It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A list of numeric vectors, with each vector specifying the indices of the observed study waves for
the corresponding outcome variable. It takes the value passed from |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define a Latent Growth Curve Model or Latent Change Score Model with a Time-varying Covariate as Class-specific Models (Submodels) for a Longitudinal Mixture Model.
Description
This function defines a latent growth curve model or latent change score model with time-varying covariate as class- specific models (submodels) for a longitudinal mixture model.
Usage
getsub.TVC_l(
dat,
nClass,
t_var,
records,
y_var,
curveFun,
intrinsic,
y_model,
TVC,
decompose,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of latent classes for the mixture model. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from
|
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave.
It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Define a Latent Growth Curve Model or Latent Change Score Model with a Time-varying Covariate as Class-specific Models (Submodels) for a Longitudinal Multiple Group Model.
Description
This function defines a latent growth curve model or latent change score model with time-varying covariate as class- specific models (submodels) for a longitudinal multiple group model.
Usage
getsub.TVC_m(
dat,
nClass,
grp_var,
t_var,
y_var,
curveFun,
intrinsic,
records,
y_model,
TVC,
decompose,
growth_TIC,
starts
)
Arguments
dat |
A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with
repeated measurements and occasions for each longitudinal process, and time-invariant covariates (TICs) if any.
It takes the value passed from |
nClass |
An integer specifying the number of manifested classes for the multiple group model. It takes the value passed from |
grp_var |
A string specifying the column that indicates manifested classes. It takes the value passed from |
t_var |
A string specifying the prefix of the column names corresponding to the time variable at each study wave.
It takes the value passed from |
y_var |
A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
It takes the value passed from |
curveFun |
A string specifying the functional form of the growth curve. Supported options for |
intrinsic |
A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. It takes the
value passed from |
records |
A numeric vector specifying the indices of the observed study waves. It takes the value passed from
|
y_model |
A string specifying how to fit the longitudinal outcome. Supported values are |
TVC |
A string specifying the prefix of the column names corresponding to the time-varying covariate at each study wave.
It takes the value passed from |
decompose |
An integer specifying the decomposition option for temporal states. Supported values include |
growth_TIC |
A string or character vector specifying the column name(s) of time-invariant covariate(s) that account for the
variability of growth factors, if any. It takes the value passed from |
starts |
A list of initial values for the parameters, either takes the value passed from |
Value
A list of manifest and latent variables and paths for an mxModel object.
Standard Methods (S4) for the package
Description
S4 Class for the output structure for estimate functions.
Slots
mxOutput
An object of class "MxModel".
Estimates
A data frame of estimates.
S4 Class for posterior probabilities, membership, entropy, and accuracy (when applicable)
Description
S4 Class for the output structure for the getPosterior()
function.
Slots
prob
A matrix of posterior probabilities.
membership
A numeric vector for membership.
entropy
A numeric value for entropy.
accuracy
A numeric value for accuracy.
S4 Generic for displaying output in a table format.
Description
Generic function for printing output that are tables.
Usage
printTable(object)
Arguments
object |
An object of the appropriate class. |
S4 Method for printing estimated factor scores and their standard errors
Description
Method for printing estimated factor scores and their standard errors.
Usage
## S4 method for signature 'FSOutput'
printTable(object)
Arguments
object |
An object of class "FSOutput". |
S4 Method for printing kappa statistic with $95%$ CI and judgement for agreement.
Description
Method for printing kappa statistic with $95%$ CI and judgement for agreement.
Usage
## S4 method for signature 'KappaOutput'
printTable(object)
Arguments
object |
An object of class "KappaOutput". |
S4 Method for printing p values and confidence intervals (when applicable)
Description
Method for printing p values and confidence intervals.
Usage
## S4 method for signature 'StatsOutput'
printTable(object)
Arguments
object |
An object of class "StatsOutput". |
S4 Method for printing point estimates with standard errors
Description
Method for printing point estimates and standard errors.
Usage
## S4 method for signature 'myMxOutput'
printTable(object)
Arguments
object |
An object of class "myMxOutput". |
S4 Method for printing posterior probabilities, membership, entropy, and accuracy.
Description
Method for printing posterior probabilities, membership, entropy, and accuracy.
Usage
## S4 method for signature 'postOutput'
printTable(object)
Arguments
object |
An object of class "postOutput". |
S4 Method for displaying figures.
Description
Method to display a summary of the figOutput object when printed.
Usage
## S4 method for signature 'figOutput'
show(object)
Arguments
object |
An object of class "figOutput". |