This vignette illustrates some basic use cases of the mpt package, how to check for model identifiability, and how to perform simulation-based power analysis.
The examples have been inspired by
Schmidt, O., Erdfelder, E., & Heck, D. W. (2023). How to develop, test, and extend multinomial processing tree models: A tutorial. Psychological Methods. https://doi.org/10.1037/met0000561
Bayen (1990) presented 40 younger and 40 older adults with a list of 50 words to be learned. The list consisted of 20 semantic word pairs and 10 singleton words. In a later memory test, participants freely recalled the presented words. For pairs, responses were classified into four categories: both words in a pair are recalled adjacently (E1) or non-adjacently (E2), one word in a pair is recalled (E3), neither word in a pair is recalled (E4); for singletons, into two categories: word recalled (F1), word not recalled (F2).
The individual recall frequencies are available in Schmidt, Erdfelder, and Heck (2023), see
?agememory
. Displayed below are the aggregate recall
frequencies for pairs and singletons by age group and lag condition.
dat <- read.table(header = TRUE, text = "
lag age resp freq
0 young E1 90 # adjacent recall: apple, banana
0 young E2 14 # non-adjacent recall: apple, ..., banana
0 young E3 84 # single recall: only apple or only banana
0 young E4 212 # non-recall: neither apple nor banana
n/a young F1 102 # recall
n/a young F2 298 # non-recall
0 old E1 42
0 old E2 5
0 old E3 63
0 old E4 290
n/a old F1 64
n/a old F2 336
15 young E1 67
15 young E2 18
15 young E3 123
15 young E4 192
15 old E1 30
15 old E2 13
15 old E3 95
15 old E4 262
")
dat$age <- factor(dat$age, levels = c("young", "old"))
Specifying and fitting an MPT model involves two steps:
mptspec()
specifies the model, mpt()
fits it
to the data.
For example, the storage-retrieval pair-clustering model for a single
condition consists of two multinomial category systems (trees): one for
pairs, one for singletons. The dot notation in mptspec()
can be used to identify the trees.
# Pairs Singletons
#
# /r -- E1
# c
# / \1-r -- E4 a -- F1 c: cluster storage
# / / r: cluster retrieval
# \ /u -- E2 \ u: non-clustered storage/retrieval
# \ u 1-a -- F2 a: singleton storage/retrieval
# \ / \1-u -- E3
# 1-c
# \ /u -- E3
# 1-u
# \1-u -- E4
mptspec( # specify model
E.1 = c*r,
E.2 = (1 - c)*u^2, # dot notation:
E.3 = 2 * (1 - c)*u*(1 - u), # tree.response
E.4 = c*(1 - r) + (1 - c)*(1 - u)^2,
F.1 = a,
F.2 = 1 - a,
.restr = list(a = u)
) |>
mpt(data = dat[dat$lag != 15 & dat$age == "young", ]) # fit to data
##
## Multinomial processing tree (MPT) models
##
## Parameter estimates:
## c r u
## 0.4481 0.5021 0.2543
##
## Goodness of fit (2 log likelihood ratio):
## G2(1) = 0.007307, p = 0.9319
Alternatively, some model structures are pre-specified and can be
called by passing a string label, see ?mptspec
.
Standard extractor functions work on the model object.
##
## Multinomial processing tree (MPT) models
##
## Parameter estimates:
## c r u
## 0.4481 0.5021 0.2543
##
## Goodness of fit (2 log likelihood ratio):
## G2(1) = 0.007307, p = 0.9319
##
## Coefficients:
## Estimate Logit Estim. Std. Error z value Pr(>|z|)
## c 0.4481 -0.208231 0.247619 -0.841 0.400
## r 0.5021 0.008348 0.291927 0.029 0.977
## u 0.2543 -1.075762 0.106569 -10.094 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Likelihood ratio G2: 0.007307 on 1 df, p-value: 0.9319
## Pearson X2: 0.007273, AIC: 28.642
## Number of trees: 2
## 'log Lik.' -11.32105 (df=3)
## [1] 28.64211
## [1] 26.80099
## c r u
## 0.4481295 0.5020870 0.2543089
## 2.5 % 97.5 %
## c 0.3281043 0.5681547
## r 0.3590481 0.6451259
## u 0.2146992 0.2939186
mptspec()
to specify the one-high-threshold
model:# Target Distractor
#
# r -- Hit
# / } 55 b -- FA 45
# / b -- Hit / r: recognition
# \ / \ b: bias
# 1-r 1-b -- CR 765
# \
# 1-b -- Miss 35
mpt()
to fit the model to the response frequencies
(taken from Bröder and Schütz 2009, see
?recogROC
).There are two parameter estimation methods available in
mpt()
. One is an application of the EM algorithm (Hu 1999). The other (the default) uses
optim()
’s BFGS method with analytic gradients.
A simplified version of the latter is illustrated here. It requires two parts. First, a function that returns the negative log-likelihood of the MPT model.
nll <- function(theta, data, treeid) { # negative log-likelihood
c <- theta[1]
r <- theta[2]
u <- theta[3]
a <- theta[3] # a = u
pcat <- c(
E.1 = c*r,
E.2 = (1 - c)*u^2,
E.3 = 2 * (1 - c)*u*(1 - u),
E.4 = c*(1 - r) + (1 - c)*(1 - u)^2,
F.1 = a,
F.2 = 1 - a
)
-sum(
dmultinom(data[treeid == 1], size = sum(data[treeid == 1]),
prob = pcat[treeid == 1], log = TRUE),
dmultinom(data[treeid == 2], size = sum(data[treeid == 2]),
prob = pcat[treeid == 2], log = TRUE)
)
}
Second, a call to optim()
passing the function as an
argument.
optim(par = c(.5, .5, .5), # starting values
fn = nll, # function to be minimized
data = dat[dat$lag != 15 &
dat$age == "young", "freq"], # arguments passed to fn
treeid = c(1, 1, 1, 1, 2, 2),
method = "L-BFGS-B", # algorithm
lower = rep(.001, 3), # boundaries
upper = rep(.999, 3),
hessian = TRUE)
## $par
## [1] 0.4481327 0.5020844 0.2543100
##
## $value
## [1] 11.32105
##
## $counts
## function gradient
## 12 12
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##
## $hessian
## [,1] [,2] [,3]
## [1,] 772.4919 419.6633 -560.4388
## [2,] 419.6633 508.5846 278.3646
## [3,] -560.4388 278.3646 4065.7657
Write an R function that returns the negative log-likelihood of the one-high-threshold model.
Use optim()
to estimate the parameters for the
example data from before.
Compare the results to the output of mpt()
.
Model comparison is a two-step procedure. First, specify and fit a restricted model, where the restriction corresponds to the hypothesis being tested (here, H0: \(c = 0.5\)).
m0 <-
update(m$spec, .restr = list(c = 0.5)) |> # specify restriction(s)
mpt(data = m$y) |> # refit
print()
##
## Multinomial processing tree (MPT) models
##
## Parameter estimates:
## r u
## 0.4591 0.2649
##
## Goodness of fit (2 log likelihood ratio):
## G2(2) = 0.7907, p = 0.6735
Second, test the hypothesis by comparing the likelihoods of the restricted and the unrestricted models.
## Analysis of Deviance Table
##
## Model 1: m0
## Model 2: m
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 2 0.79066
## 2 1 0.00731 1 0.78335 0.3761
Fit a storage-retrieval pair-clustering model that jointly accounts for young and old participants (ignoring the lag-15 pairs).
Test the age effect on
Consider the storage-retrieval pair-clustering model for young and old participants in its original parameterization.
##
## Multinomial processing tree (MPT) models
##
## Parameter estimates:
## c1 r1 u1 c2 r2 u2
## 0.4481 0.5021 0.2543 0.4156 0.2526 0.1579
##
## Goodness of fit (2 log likelihood ratio):
## G2(2) = 0.1554, p = 0.9252
An alternative parameterization substitutes \(c_{old} = s \cdot c_{young}\), where \(s \in (0, 1)\) is a shrinkage parameter that enforces the order constraint \(c_{old} \leq c_{young}\).
##
## Multinomial processing tree (MPT) models
##
## Parameter estimates:
## c1 r1 u1 s r2 u2
## 0.4481 0.5021 0.2543 0.9275 0.2526 0.1579
##
## Goodness of fit (2 log likelihood ratio):
## G2(2) = 0.1554, p = 0.9252
The idea of shrinkage parameters is useful for testing interaction hypotheses:
H0: Age decline in \(c\) and \(r\) parameters is equally strong (no interaction between memory process and age), \(s_c = s_r\).
m5 <-
update(m1$spec, .restr = list(c2 = s_c * c1, # two shrinkage pars
r2 = s_r * r1)) |>
mpt(data = m1$y)
m6 <-
update(m5$spec, .restr = list(s_c = s_r)) |> # single shrinkage par
mpt(data = m1$y)
anova(m6, m5)
## Analysis of Deviance Table
##
## Model 1: m6
## Model 2: m5
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 3 1.29956
## 2 2 0.15539 1 1.1442 0.2848
The resulting model has four sets of \(c\), \(r\), and \(u\) parameters (but be careful: singletons have no lag!).
Refine the previous model such that it includes only a single \(u_{young}\) and a single \(u_{old}\) parameter.
Reparameterize the refined model to account for an age-decline effect on the \(r\) parameters. Include
A model is locally identifiable if its prediction function in the neighborhood of some parameter values is one to one, so that its Jacobian (the matrix of partial derivatives) will have full rank.
In the storage-retrieval pair-clustering model, one might assume that processing of non-clustered words in a pair differs for the first and the second word. This implies two different parameters (\(u_1\) and \(u_2\)) and thus renders the model non-identifiable.
s1 <- mptspec( # not identifiable: 5 parameters
E.1 = c * r,
E.2 = (1 - c) * u1 * u2,
E.3 = (1 - c) * u1 * (1 - u2) + (1 - c) * u2 * (1 - u1),
E.4 = c * (1 - r) + (1 - c) * (1 - u1) * (1 - u2),
F.1 = a,
F.2 = 1 - a
)
Its Jacobian at random parameter location is rank deficient: the rank is less than its number of parameters.
## E.1 E.2 E.3 E.4 F.1 F.2
## c 0.04732983 -0.10270071 -0.5632964 0.6186673 0 0
## r 0.46842641 0.00000000 0.0000000 -0.4684264 0 0
## u1 0.00000000 0.31710280 -0.1026320 -0.2144708 0 0
## u2 0.00000000 0.09151666 0.3485403 -0.4400569 0 0
## a 0.00000000 0.00000000 0.0000000 0.0000000 1 -1
## [1] 4
Setting \(u_1 = u_2\) makes the model identifiable. Its Jacobian has full rank.
s2 <- update(s1, .restr = list(u1 = u, u2 = u)) # make it identifiable
runif(4) |> s2$par2deriv() |> _$deriv |> print() |> qr() |> _$rank
## E.1 E.2 E.3 E.4 F.1 F.2
## c 0.7256432 -0.01705329 -0.2270699 -0.4815200 0 0
## r 0.3567334 0.00000000 0.0000000 -0.3567334 0 0
## u 0.0000000 0.16800613 0.9505210 -1.1185271 0 0
## a 0.0000000 0.00000000 0.0000000 0.0000000 1 -1
## [1] 4
Another quick check of local identifiability is to re-estimate the model from random starting values. If the model converges to the same maximum but has non-unique estimates, it possibly is not identifiable.
suppressWarnings(replicate(10,
mpt(s1, data = dat[dat$lag != 15 & dat$age == "young", ],
start = runif(5)) |>
coef()
)) |> t() # not identifiable: parameter trade-offs
## c r u1 u2 a
## [1,] 0.7423224 0.3031028 0.9425163 0.1441128 0.2550000
## [2,] 0.5529095 0.4069382 0.4537418 0.1725297 0.2550000
## [3,] 0.5834305 0.3856500 0.5061639 0.1659929 0.2550000
## [4,] 0.6678801 0.3368867 0.6904356 0.1526337 0.2550000
## [5,] 0.4422502 0.5087617 0.2669200 0.2350972 0.2550000
## [6,] 0.6734033 0.3341237 0.7054056 0.1519208 0.2550000
## [7,] 0.7168590 0.3138693 0.8421181 0.1467886 0.2549999
## [8,] 0.6908334 0.3256936 0.7558943 0.1497668 0.2550001
## [9,] 0.7507914 0.2996838 0.9802879 0.1432687 0.2550000
## [10,] 0.6101037 0.3687898 0.5569680 0.1611717 0.2550000
replicate(10,
mpt(s2, data = dat[dat$lag != 15 & dat$age == "young", ],
start = runif(4)) |>
coef()
) |> t() # identifiable: unique estimates
## c r u a
## [1,] 0.4400000 0.5113636 0.2500000 0.255
## [2,] 0.4400000 0.5113636 0.2500000 0.255
## [3,] 0.4399999 0.5113636 0.2499999 0.255
## [4,] 0.4400000 0.5113636 0.2500000 0.255
## [5,] 0.4400000 0.5113637 0.2500000 0.255
## [6,] 0.4400000 0.5113636 0.2500000 0.255
## [7,] 0.4399993 0.5113643 0.2499996 0.255
## [8,] 0.4400000 0.5113636 0.2500000 0.255
## [9,] 0.4400000 0.5113636 0.2500000 0.255
## [10,] 0.4400000 0.5113636 0.2500000 0.255
Simulation-based power analysis involves four steps (e.g., Wickelmaier 2022): specifying a model that includes the effect of interest, generating data from the model, testing the null hypothesis, repeating data generation and testing. The proportion of times the test turns out significant is an estimate of its power.
Set up a data generator.
s <- mptspec(
E.1 = c * r,
E.2 = (1 - c) * u^2,
E.3 = 2 * (1 - c) * u * (1 - u),
E.4 = c * (1 - r) + (1 - c) * (1 - u)^2,
F.1 = a,
F.2 = 1 - a
)
s$par # before you use par2prob(), carefully check position of parameters!
## c r u a
## NA NA NA NA
## E.1 E.2 E.3 E.4 F.1 F.2
## 0.25 0.08 0.24 0.43 0.60 0.40
dataGen <- function(nn, d) {
structure(list( # stub mpt object
treeid = s$treeid,
n = setNames((nn * c(2, 1)/3)[s$treeid], s$treeid), # 2:1 ratio
pcat = s$par2prob(c(c = 0.5, r = 0.5,
u = 0.5 - d/2, a = 0.5 + d/2))
), class = "mpt") |>
simulate()
}
dataGen(960, 0.2)
## E.1 E.2 E.3 E.4 F.1 F.2
## 159 52 138 291 194 126
Try to recover the parameter values from the generated responses.
Run your own parameter recovery:
Did you succeed in recovering the parameters?
The first example is a power analysis of the goodness-of-fit test of the storage-retrieval pair-clustering model. The model assumes identical processing of non-clustered pairs and singletons, so H0: \(a = u\).
Set up a function that calls the data generator, performs the test, and returns its p value.
testFun <- function(nn, d) {
y <- dataGen(nn, d) # generate data with effect
m1 <- mpt(s, y)
m2 <- mpt(update(s, .restr = list(a = u)), y)
anova(m2, m1)$"Pr(>Chi)"[2] # test H0, return p value
}
Repeating the data generation and testing steps for each condition may take some time, depending on the model, the number of conditions, and the number of replications.
# pwrsim1 <- expand.grid(d = seq(0, 0.5, 0.1), n = 30 * 2^(0:5))
#
# system.time( # about 20 min
# pwrsim1$pval <-
# mapply(function(nn, d) replicate(500, testFun(nn, d)),
# nn = pwrsim1$n, d = pwrsim1$d, SIMPLIFY = FALSE)
# )
# pwrsim1$pwr <- sapply(pwrsim1$pval, function(p) mean(p < .05))
# }
To save a bit of time, the above simulation has been pre-run, see
?pwrsim
, and results are reused here for illustration.
data(pwrsim) # provides pwrsim1 and pwrsim2
if(requireNamespace("lattice")) {
lattice::xyplot(pwr ~ d, pwrsim1, groups = n, type = c("g", "b"),
auto.key = list(space = "right"),
xlab = "Parameter difference a - u",
ylab = "Simulated power")
}
## Lade nötigen Namensraum: lattice
The second example is a power analysis of a test of age differences in retrieval. It requires a two-group model, so the hypothesis \(r_{young} = r_{old}\) can be tested.
s <- mptspec("SR", .replicates = 2)
dataGen <- function(nn, d) {
structure(list(
treeid = s$treeid,
n = setNames((nn/2 * c(2, 1, 2, 1)/3)[s$treeid], s$treeid),
pcat = s$par2prob(c(c1 = 0.5, r1 = 0.4 + d/2, u1 = 0.3, # young
c2 = 0.5, r2 = 0.4 - d/2, u2 = 0.3)) # old
), class = "mpt") |>
simulate(m)
}
testFun <- function(nn, d) {
y <- dataGen(nn, d)
m1 <- mpt(s, y)
m2 <- mpt(update(s, .restr = list(r1 = r2)), y)
anova(m2, m1)$"Pr(>Chi)"[2]
}
# pwrsim2 <- expand.grid(d = seq(0, 0.4, 0.1), n = 120 * 2^(0:2))
if(requireNamespace("lattice")) {
lattice::xyplot(pwr ~ d, pwrsim2, groups = n, type = c("g", "b"),
auto.key = list(space = "right"),
xlab = "Parameter difference r1 - r2",
ylab = "Simulated power")
}
In the storage-retrieval pair-clustering model, what sample size is required to detect a parameter difference \(r_{young} - r_{old} = 0.4\) with a power of about 0.8?
Simulate power for