--- title: "mig package" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{mig package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} bibliography: mig.bib --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align="center", fig.width = 5, fig.height = 5 ) ``` ```{r} #| label: setup #| echo: false #| eval: true library(mig) set.seed(0) ``` The `mig` package provides utilities for kernel density estimation for random vectors using the multivariate inverse Gaussian distribution defined over the half space $\mathcal{H}_d(\boldsymbol{\beta}) = \{\boldsymbol{x} \in \mathbb{R}^d: \boldsymbol{\beta}^\top \boldsymbol{x} > 0\}$ with location vector $\boldsymbol{\xi}$, scale matrix $\boldsymbol{\Omega}$, whose density is \begin{align*} \frac{\boldsymbol{\beta}^\top\boldsymbol{\xi}}{(2\pi)^{d/2}|\boldsymbol{\Omega}|}(\boldsymbol{\beta}^\top\boldsymbol{x})^{-d/2-1}\exp \left\{-\frac{(\boldsymbol{x} - \boldsymbol{\xi})^\top \boldsymbol{\Omega}^{-1}(\boldsymbol{x}-\boldsymbol{\xi})}{2\boldsymbol{\beta}^\top\boldsymbol{x}}\right\}, \qquad \boldsymbol{x} \in \mathcal{H}_d(\boldsymbol{\beta}). \end{align*} ## Random number generation @Minami:2003 provides a constructive characterization of the inverse Gaussian as the hitting time of a particular hyperplane by a correlated Brownian motion, simulation requires discretization of the latter, and more accurate simulations come at increased costs. ```{r} #| eval: false #| echo: false #| label: fig-penultshape #| fig-cap: "Penultimate shape behaviour for the inverse Gaussian margin with $\\xi=1$ and \\Omega=1$." library(statmod) penult <- mev::smith.penult("invgauss", method = "pot", qu = seq(0.9, 0.9995, by = 0.0005), mean = 1, shape = 1 / 1) plot(penult$qu, penult$shape, xlab = "quantile level", xlim = c(min(penult$qu), 1), ylim = c(0, 0.25), yaxs = "i", xaxs = "i", pch = 20, ylab = "penultimate shape", type = 'l', bty = "l") ``` Let $\boldsymbol{\beta} \in \mathbb{R}^d$ be the vector defining the halfspace and consider a $(d-1) \times d$ matrix $\mathbf{Q}_2$, such that $\mathbf{Q}_2^\top\boldsymbol{\beta} = \boldsymbol{0}_{d-1}$ and $\mathbf{Q}_2\mathbf{Q}_2^\top = \mathbf{I}_{d-1}$. Theorem 1 (3) of @Minami:2003 implies that, for $\mathbf{Q} = (\boldsymbol{\beta}, \mathbf{Q}_2^\top)\vphantom{Q}^{\top}$ and \begin{align*} Z_1 &\sim \mathsf{MIG}(\boldsymbol{\beta}^\top\boldsymbol{\xi}, \boldsymbol{\beta}^\top\boldsymbol{\Omega}\boldsymbol{\beta}) \\ \boldsymbol{Z}_2 \mid Z_1 = z_1 &\sim \mathsf{Norm}_{d-1}\left[\mathbf{Q}_2\{\boldsymbol{\xi} + \boldsymbol{\Omega}\boldsymbol{\beta}/(\boldsymbol{\beta}^\top\boldsymbol{\Omega}\boldsymbol{\beta})(z_1-\boldsymbol{\beta}^\top\boldsymbol{\xi})\}, z_1(\mathbf{Q}_2\boldsymbol{\Omega}^{-1}\mathbf{Q}_2^\top)^{-1}\right], \end{align*} we have $\mathbf{Q}^{-1}\boldsymbol{Z} \sim \mathsf{MIG}(\boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\Omega})$. Consider the symmetric orthogonal projection matrix $\mathbf{M}_{\boldsymbol{\beta}}=\mathbf{I}_d - \boldsymbol{\beta}\boldsymbol{\beta}^\top/(\boldsymbol{\beta}^\top\boldsymbol{\beta})$ of rank $d-1$ due to the linear dependency. We build $\mathbf{Q}_2$ from the set of $d-1$ eigenvectors associated to the non-zero eigenvalues of $\mathbf{M}_{\boldsymbol{\beta}}$. We can then perform forward sampling of $Z_1$ and $\boldsymbol{Z}_2 \mid Z_1$ and compute the resulting vectors. ```{r} #| eval: true #| echo: true # Create projection matrix onto the orthogonal complement of beta d <- 5L # dimension of vector n <- 1e4L # number of simulations beta <- rexp(d) xi <- rexp(d) Omega <- matrix(0.5, d, d) + diag(d) # Project onto orthogonal complement of vector Mbeta <- (diag(d) - tcrossprod(beta)/(sum(beta^2))) # Matrix is rank-deficient: compute eigendecomposition # Shed matrix to remove the eigenvector corresponding to the 0 eigenvalue Q2 <- t(eigen(Mbeta, symmetric = TRUE)$vectors[,-d]) # Check Q2 satisfies the conditions all.equal(rep(0, d-1), c(Q2 %*% beta)) # check orthogonality all.equal(diag(d-1), tcrossprod(Q2)) # check basis is orthonormal Qmat <- rbind(beta, Q2) covmat <- solve(Q2 %*% solve(Omega) %*% t(Q2)) # Compute mean and variance for Z1 mu <- sum(beta*xi) omega <- sum(beta * c(Omega %*% beta)) Z1 <- rmig(n = n, xi = mu, Omega = omega) # uses statmod, with mean = mu and shape mu^2/omega # Generate Gaussian vectors in two-steps (vectorized operations) Z2 <- sweep(TruncatedNormal::rtmvnorm(n = n, mu = rep(0, d-1), sigma = covmat), 1, sqrt(Z1), "*") Z2 <- sweep(Z2, 2, c(Q2 %*% xi), "+") + tcrossprod(Z1 - mu, c(Q2 %*% c(Omega %*% beta)/omega)) # Compute inverse of Q matrix (it is actually invertible) samp <- t(solve(Qmat) %*% t(cbind(Z1, Z2))) # Check properties mle <- mig::fit_mig(samp, beta = beta) max(abs(mle$xi - xi)) norm(mle$Omega - Omega, type = "f") max(abs(1 - mle$Omega/Omega)) ``` ## References