## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # # Load required libraries # library(dplyr) # # # Generate example growth curve data # set.seed(123) # time <- 1:10 # LOG10N <- c(2.0, 2.8, 3.6, 5.0, 7.0, 9.0, 12.0, 15.8, 20.0, 25.5) # gr_curve <- data.frame(t = time, LOG10N = LOG10N) # # # Fit the Baranyi model using the best algorithm # best_fit <- choose_lag_fit_algorithm_baranyi(gr_curve, LOG10N0 = 2.0, init_lag = 0.5, init_mumax = 0.3, init_LOG10Nmax = 30, max_iter = 100, lower_bound = 0) # # # Print the results # best_fit ## ----eval = FALSE------------------------------------------------------------- # # Load required libraries # library(dplyr) # # # Generate example growth curve data # set.seed(123) # time <- 1:10 # biomass <- c(0.1, 0.3, 0.7, 1.5, 3.0, 5.0, 8.0, 12.0, 18.0, 25.0) # gr_curve <- data.frame(time = time, biomass = biomass) # # # Fit the Logistic model using the best algorithm # best_fit <- choose_lag_fit_algorithm_logistic(gr_curve, n0 = 0.1, init_gr_rate = 0.5, init_K = 30, init_lag = 0.5, max_iter = 100, lower_bound = c(0, 0, 0)) # # # Print the results # best_fit