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calc_neutral_loss Calculate neutral losses from precursor ion mass and fragment ion
masses

Description

Calculate neutral loss spectra for all ions with available MSn spectra in data. To calculate neutral
losses, MSn spectra are required. See read_mgf. This step is required for subsequent filtering based
on neutral losses (filter_neutral_loss). Resulting neutral loss spectra are stored in tibbles in a
new list column named Neutral_Loss.

Usage

calc_neutral_loss(data, m_z_col)

Arguments

data A tidy tibble created by read_featuretable.

m_z_col Which column holds the precursor m/z? Uses args_data_masking.

Value

A tibble with added neutral loss spectra. A new list column is created named Neutral_Loss.

Examples

toy_mgf %>%
calc_neutral_loss(m_z_col = PEPMASS)
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collapse_max Collapse intensities of technical replicates by calculating their maxi-
mum

Description

Calculates the minimum of the intensity of technical replicates (e.g., if the same sample was injected
multiple times or if multiple workups have been performed on the same starting material). The
function assigns new sample names by joining either group and replicate name, or if a batch column
is specified group, replicate and batch together with a specified separator. Due to the nature of the
function, sample and feature metadata columns will be dropped unless they are specified with the
according arguments.

Usage

collapse_max(
data,
group_column = .data$Group,
replicate_column = .data$Replicate,
batch_column = .data$Batch,
feature_metadata_cols = "Feature",
sample_metadata_cols = NULL,
separator = "_"

)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

replicate_column

Which column contains replicate information? Usually replicate_column =
Replicate. Uses args_data_masking.

batch_column Which column contains batch information? If all samples belong to the same
batch (i.e., they all have the same batch identifier in the batch_column) it will
have no effect on the calculation. Usually batch_column = Batch. Uses args_data_masking.

feature_metadata_cols

A character or character vector containing the names of the feature metadata
columns. They are usually created when reading the feature table with read_featuretable.
Feature metadata columns not specified here will be dropped.

sample_metadata_cols

A character or character vector containing the names of the sample metadata
columns. They are usually created when joining the metadata with join_metadata.
Sample metadata columns not specified here will be dropped, except for group_column,
replicate_column and batch_column if specified.
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separator Separator used for joining group and replicate, or group, batch and replicate to-
gether to create the new sample names. The new sample names will be Group
name, separator, Batch name, separator, Replicate name, or Group name, sepa-
rator, Replicate name, in case all samples belong to the same batch (i.e., they all
have the same batch identifier in the batch_column).

Value

A tibble with intensities of technical replicates collapsed.

Examples

# uses a slightly modified version of toy_metaboscape_metadata
collapse_toy_metaboscape_metadata <- toy_metaboscape_metadata
collapse_toy_metaboscape_metadata$Replicate <- 1

toy_metaboscape %>%
join_metadata(collapse_toy_metaboscape_metadata) %>%
impute_lod() %>%
collapse_max(group_column = Group, replicate_column = Replicate)

collapse_mean Collapse intensities of technical replicates by calculating their mean

Description

Calculates the mean of the intensity of technical replicates (e.g., if the same sample was injected
multiple times or if multiple workups have been performed on the same starting material). The
function assigns new sample names by joining either group and replicate name, or if a batch column
is specified group, replicate and batch together with a specified separator. Due to the nature of the
function, sample and feature metadata columns will be dropped unless they are specified with the
according arguments.

Usage

collapse_mean(
data,
group_column = .data$Group,
replicate_column = .data$Replicate,
batch_column = .data$Batch,
feature_metadata_cols = "Feature",
sample_metadata_cols = NULL,
separator = "_"

)
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Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

replicate_column

Which column contains replicate information? Usually replicate_column =
Replicate. Uses args_data_masking.

batch_column Which column contains batch information? If all samples belong to the same
batch (i.e., they all have the same batch identifier in the batch_column) it will
have no effect on the calculation. Usually batch_column = Batch. Uses args_data_masking.

feature_metadata_cols

A character or character vector containing the names of the feature metadata
columns. They are usually created when reading the feature table with read_featuretable.
Feature metadata columns not specified here will be dropped.

sample_metadata_cols

A character or character vector containing the names of the sample metadata
columns. They are usually created when joining the metadata with join_metadata.
Sample metadata columns not specified here will be dropped, except for group_column,
replicate_column and batch_column if specified.

separator Separator used for joining group and replicate, or group, batch and replicate to-
gether to create the new sample names. The new sample names will be Group
name, separator, Batch name, separator, Replicate name, or Group name, sepa-
rator, Replicate name, in case all samples belong to the same batch (i.e., they all
have the same batch identifier in the batch_column).

Value

A tibble with intensities of technical replicates collapsed.

Examples

# uses a slightly modified version of toy_metaboscape_metadata
collapse_toy_metaboscape_metadata <- toy_metaboscape_metadata
collapse_toy_metaboscape_metadata$Replicate <- 1

toy_metaboscape %>%
join_metadata(collapse_toy_metaboscape_metadata) %>%
impute_lod() %>%
collapse_mean(group_column = Group, replicate_column = Replicate)
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collapse_median Collapse intensities of technical replicates by calculating their median

Description

Calculates the median of the intensity of technical replicates (e.g., if the same sample was injected
multiple times or if multiple workups have been performed on the same starting material). The
function assigns new sample names by joining either group and replicate name, or if a batch column
is specified group, replicate and batch together with a specified separator. Due to the nature of the
function, sample and feature metadata columns will be dropped unless they are specified with the
according arguments.

Usage

collapse_median(
data,
group_column = .data$Group,
replicate_column = .data$Replicate,
batch_column = .data$Batch,
feature_metadata_cols = "Feature",
sample_metadata_cols = NULL,
separator = "_"

)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

replicate_column

Which column contains replicate information? Usually replicate_column =
Replicate. Uses args_data_masking.

batch_column Which column contains batch information? If all samples belong to the same
batch (i.e., they all have the same batch identifier in the batch_column) it will
have no effect on the calculation. Usually batch_column = Batch. Uses args_data_masking.

feature_metadata_cols

A character or character vector containing the names of the feature metadata
columns. They are usually created when reading the feature table with read_featuretable.
Feature metadata columns not specified here will be dropped.

sample_metadata_cols

A character or character vector containing the names of the sample metadata
columns. They are usually created when joining the metadata with join_metadata.
Sample metadata columns not specified here will be dropped, except for group_column,
replicate_column and batch_column if specified.
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separator Separator used for joining group and replicate, or group, batch and replicate to-
gether to create the new sample names. The new sample names will be Group
name, separator, Batch name, separator, Replicate name, or Group name, sepa-
rator, Replicate name, in case all samples belong to the same batch (i.e., they all
have the same batch identifier in the batch_column).

Value

A tibble with intensities of technical replicates collapsed.

Examples

# uses a slightly modified version of toy_metaboscape_metadata
collapse_toy_metaboscape_metadata <- toy_metaboscape_metadata
collapse_toy_metaboscape_metadata$Replicate <- 1

toy_metaboscape %>%
join_metadata(collapse_toy_metaboscape_metadata) %>%
impute_lod() %>%
collapse_median(group_column = Group, replicate_column = Replicate)

collapse_min Collapse intensities of technical replicates by calculating their mini-
mum

Description

Calculates the minimum of the intensity of technical replicates (e.g., if the same sample was injected
multiple times or if multiple workups have been performed on the same starting material). The
function assigns new sample names by joining either group and replicate name, or if a batch column
is specified group, replicate and batch together with a specified separator. Due to the nature of the
function, sample and feature metadata columns will be dropped unless they are specified with the
according arguments.

Usage

collapse_min(
data,
group_column = .data$Group,
replicate_column = .data$Replicate,
batch_column = .data$Batch,
feature_metadata_cols = "Feature",
sample_metadata_cols = NULL,
separator = "_"

)
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Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

replicate_column

Which column contains replicate information? Usually replicate_column =
Replicate. Uses args_data_masking.

batch_column Which column contains batch information? If all samples belong to the same
batch (i.e., they all have the same batch identifier in the batch_column) it will
have no effect on the calculation. Usually batch_column = Batch. Uses args_data_masking.

feature_metadata_cols

A character or character vector containing the names of the feature metadata
columns. They are usually created when reading the feature table with read_featuretable.
Feature metadata columns not specified here will be dropped.

sample_metadata_cols

A character or character vector containing the names of the sample metadata
columns. They are usually created when joining the metadata with join_metadata.
Sample metadata columns not specified here will be dropped, except for group_column,
replicate_column and batch_column if specified.

separator Separator used for joining group and replicate, or group, batch and replicate to-
gether to create the new sample names. The new sample names will be Group
name, separator, Batch name, separator, Replicate name, or Group name, sepa-
rator, Replicate name, in case all samples belong to the same batch (i.e., they all
have the same batch identifier in the batch_column).

Value

A tibble with intensities of technical replicates collapsed.

Examples

# uses a slightly modified version of toy_metaboscape_metadata
collapse_toy_metaboscape_metadata <- toy_metaboscape_metadata
collapse_toy_metaboscape_metadata$Replicate <- 1

toy_metaboscape %>%
join_metadata(collapse_toy_metaboscape_metadata) %>%
impute_lod() %>%
collapse_min(group_column = Group, replicate_column = Replicate)
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create_metadata_skeleton

Create a blank metadata skeleton

Description

Takes a tidy tibble created by metamorphr::read_featuretable() and returns an empty tibble
for sample metadata. The tibble can either be populated directly in R or exported and edited by
hand (e.g. in Excel). Metadata are necessary for several downstream functions. More columns
may be added if necessary.

Usage

create_metadata_skeleton(data)

Arguments

data A tidy tibble created by metamorphr::read_featuretable().

Value

An empty tibble structure with the necessary columns for metadata:

Sample The sample name

Group To which group does the samples belong? For example a treatment or a background. Note
that additional columns with additional grouping information can be freely added if necessary.

Replicate If multiple technical replicates exist in the data set, they must have the same value for
Replicate and the same value for Group so that they can be collapsed. Examples for technical
replicates are: the same sample was injected multiple times or workup was performed multiple
times with the same starting material. If no technical replicates exist, set Replicate = 1 for
all samples.

Batch The batch in which the samples were prepared or measured. If only one batch exists, set
Batch = 1 for all samples.

Factor A sample-specific factor, for example dry weight or protein content. ...

Examples

featuretable_path <- system.file("extdata", "toy_metaboscape.csv", package = "metamorphr")
metadata <- read_featuretable(featuretable_path, metadata_cols = 2:5) %>%

create_metadata_skeleton()
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filter_blank Filter Features based on their occurrence in blank samples

Description

Filters Features based on their occurrence in blank samples. For example, if min_frac = 3 the
maximum intensity in samples must be at least 3 times as high as in blanks for a Feature not to be
filtered out.

Usage

filter_blank(
data,
blank_samples,
min_frac = 3,
blank_as_group = FALSE,
group_column = NULL

)

Arguments

data A tidy tibble created by read_featuretable.

blank_samples Defines the blanks. If blank_as_group = FALSE a character vector containing
the names of the blank samples as in the Sample column of data. If blank_as_group
= TRUE the name(s) of the group(s) that define blanks, as in the Group column of
data. The latter can only be used if sample metadata is provided.

min_frac A numeric defining how many times higher the maximum intensity in samples
must be in relation to blanks.

blank_as_group A logical indicating if blank_samples are the names of samples or group(s).

group_column Only relevant if blank_as_group = TRUE. Which column should be used for
grouping blank and non-blank samples? Usually group_column = Group. Uses
args_data_masking.

Value

A filtered tibble.

Examples

# Example 1: Define blanks by sample name
toy_metaboscape %>%
filter_blank(blank_samples = c("Blank1", "Blank2"), blank_as_group = FALSE, min_frac = 3)

# Example 2: Define blanks by group name
# toy_metaboscape %>%
# join_metadata(toy_metaboscape_metadata) %>%
# filter_blank(blank_samples = "blank",
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# blank_as_group = TRUE,
# min_frac = 3,
# group_column = Group)

filter_cv Filter Features based on their coefficient of variation

Description

Filters Features based on their coefficient of variation (CV). The CV is defined as CV = si
xi

with
si = Standard deviation of sample i and xi = Mean of sample i.

Usage

filter_cv(
data,
reference_samples,
max_cv = 0.2,
ref_as_group = FALSE,
group_column = NULL,
na_as_zero = TRUE

)

Arguments

data A tidy tibble created by read_featuretable.
reference_samples

The names of the samples or group which will be used to calculate the CV of a
feature. Usually Quality Control samples.

max_cv The maximum allowed CV. 0.2 is a reasonable start.

ref_as_group A logical indicating if reference_samples are the names of samples or group(s).

group_column Only relevant if ref_as_group = TRUE. Which column should be used for group-
ing reference and non-reference samples? Usually group_column = Group. Uses
args_data_masking.

na_as_zero Should NA be replaced with 0 prior to calculation? Under the hood filter_cv
calculates the CV by stats::sd(..., na.rm = TRUE) / mean(..., na.rm = TRUE).
If there are 3 samples to calculate the CV from and 2 of them are NA for a spe-
cific feature, then the CV for that Feature will be NA if na_as_zero = FALSE.
This might lead to problems. na_as_zero = TRUE is the safer pick. Zeros will
be replaced with NA after calculation no matter if it is TRUE or FALSE.

Value

A filtered tibble.
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References

Coefficient of Variation on Wikipedia

Examples

# Example 1: Define reference samples by sample names
toy_metaboscape %>%

filter_cv(max_cv = 0.2, reference_samples = c("QC1", "QC2", "QC3"))

# Example 2: Define reference samples by group name
toy_metaboscape %>%

join_metadata(toy_metaboscape_metadata) %>%
filter_cv(max_cv = 0.2, reference_samples = "QC", ref_as_group = TRUE, group_column = Group)

filter_global_mv Filter Features based on the absolute number or fraction of samples it
was found in

Description

Filters features based on the number or fraction of samples they are found in. This is usually one of
the first steps in metabolomics data analysis and often already performed when the feature table is
first created from the raw spectral files..

Usage

filter_global_mv(data, min_found = 0.5, fraction = TRUE)

Arguments

data A tidy tibble created by metamorphr::read_featuretable().

min_found In how many samples must a Feature be found? If fraction == TRUE, a value
between 0 and 1 (e.g., 0.5 if a Feature must be found in at least half the samples).
If fraction == FALSE the absolute maximum number of samples (e.g., 5 if a
specific Feature must be found in at least 5 samples).

fraction Either TRUE or FALSE. Should min_found be the absolute number of samples or
a fraction?

Value

A filtered tibble.

https://en.wikipedia.org/wiki/Coefficient_of_variation
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Examples

# Example 1: A feature must be found in at least 50 % of the samples
toy_metaboscape %>%

filter_global_mv(min_found = 0.5)

# Example 2: A feature must be found in at least 8 samples
toy_metaboscape %>%

filter_global_mv(min_found = 8, fraction = FALSE)

filter_grouped_mv Group-based feature filtering

Description

Similar to filter_global_mv it filters features that are found in a specified number of samples.
The key difference is that filter_grouped_mv() takes groups into consideration and therefore
needs sample metadata. For example, if fraction = TRUE and min_found = 0.5, a feature must be
found in at least 50 % of the samples of at least 1 group. It is very similar to the Filter features by
occurrences in groups option in Bruker MetaboScape.

Usage

filter_grouped_mv(
data,
min_found = 0.5,
group_column = .data$Group,
fraction = TRUE

)

Arguments

data A tidy tibble created by read_featuretable with added sample metadata. See
?create_metadata_skeleton for help.

min_found Defines in how many samples of at least 1 group a Feature must be found not to
be filtered out. If fraction == TRUE, a value between 0 and 1 (e.g., 0.5 if a Fea-
ture must be found in at least half the samples of at least 1 group). If fraction
== FALSE the absolute maximum number of samples (e.g., 5 if a specific Feature
must be found in at least 5 samples of at least 1 group).

group_column Which column should be used for grouping? Usually group_column = Group.
Uses args_data_masking.

fraction Either TRUE or FALSE. Should min_found be the absolute number of samples or
a fraction?

Value

A filtered tibble.
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Examples

# A Feature must be found in all samples of at least 1 group.
toy_metaboscape %>%

join_metadata(toy_metaboscape_metadata) %>%
filter_grouped_mv(min_found = 1, group_column = Group)

filter_msn Filter Features based on occurrence of fragment ions

Description

Filters Features based on the presence of MSn fragments. This can help, for example with the
identification of potential homologous molecules.

Usage

filter_msn(
data,
fragments,
min_found,
tolerance = 5,
tolerance_type = "ppm",
show_progress = TRUE

)

Arguments

data A data frame containing MSn spectra.

fragments A numeric. Exact mass of the fragment(s) to filter by.

min_found How many of the fragments must be found in order to keep the row? If
min_found = length(fragments), all fragments must be found.

tolerance A numeric. The tolerance to apply to the fragments. Either an absolute value
in Da (if tolerance_type = "absolute") or in ppm (if tolerance_type =
"ppm").

tolerance_type Either "absolute" or "ppm". Should the tolerance be an absolute value or in
ppm?

show_progress A logical indicating whether the progress of the filtering should be printed to
the console. Only important for large tibbles.

Value

A filtered tibble.
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Examples

# all of the given fragments (3) must be found
# returns the first row of toy_mgf
toy_mgf %>%

filter_msn(fragments = c(12.3456, 23.4567, 34.5678), min_found = 3)

# all of the given fragments (3) must be found
# returns an empty tibble because the third fragment
# of row 1 (34.5678)
# is outside of the tolerance (5 ppm):
# Lower bound:
# 34.5688 - 34.5688 * 5 / 1000000 = 34.5686
# Upper bound:
# 34.5688 + 34.5688 * 5 / 1000000 = 34.5690
toy_mgf %>%

filter_msn(fragments = c(12.3456, 23.4567, 34.5688), min_found = 3)

# only 2 of the 3 fragments must be found
# returns the first row of toy_mgf
toy_mgf %>%

filter_msn(fragments = c(12.3456, 23.4567, 34.5688), min_found = 2)

filter_mz Filter Features based on their mass-to-charge ratios

Description

Facilitates filtering by given mass-to-charge ratios (m/z) with a defined tolerance. Can also be used
to filter based on exact mass.

Usage

filter_mz(data, m_z_col, masses, tolerance = 5, tolerance_type = "ppm")

Arguments

data A tidy tibble created by read_featuretable.

m_z_col Which column holds the precursor m/z (or exact mass)? Uses args_data_masking.

masses The mass(es) to filter by.

tolerance A numeric. The tolerance to apply to the masses Either an absolute value in Da
(if tolerance_type = "absolute") or in ppm (if tolerance_type = "ppm").

tolerance_type Either "absolute" or "ppm". Should the tolerance be an absolute value or in
ppm?

Value

A filtered tibble.
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Examples

# Use a tolerance of plus or minus 5 ppm
toy_metaboscape %>%

filter_mz(m_z_col = `m/z`, 162.1132, tolerance = 5, tolerance_type = "ppm")

# Use a tolerance of plus or minus 0.005 Da
toy_metaboscape %>%

filter_mz(m_z_col = `m/z`, 162.1132, tolerance = 0.005, tolerance_type = "absolute")

filter_neutral_loss Filter Features based on occurrence of neutral losses

Description

The occurrence of characteristic neutral losses can help with the putative annotation of molecules.
See the Reference section for an example.

Usage

filter_neutral_loss(
data,
losses,
min_found,
tolerance = 10,
tolerance_type = "ppm",
show_progress = TRUE

)

Arguments

data A data frame containing MSn spectra.

losses A numeric. Exact mass of the fragment(s) to filter by.

min_found How many of the fragments must be found in order to keep the row? If
min_found = length(fragments), all fragments must be found.

tolerance A numeric. The tolerance to apply to the fragments. Either an absolute value
in Da (if tolerance_type = "absolute") or in ppm (if tolerance_type =
"ppm").

tolerance_type Either "absolute" or "ppm". Should the tolerance be an absolute value or in
ppm?

show_progress A logical indicating whether the progress of the filtering should be printed to
the console. Only important for large tibbles.

Value

A filtered tibble.
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References

• A. Brink, F. Fontaine, M. Marschmann, B. Steinhuber, E. N. Cece, I. Zamora, A. Pähler, Rapid
Commun. Mass Spectrom. 2014, 28, 2695–2703, DOI 10.1002/rcm.7062.

Examples

# neutral losses must be calculated first
toy_mgf_nl <- toy_mgf %>%

calc_neutral_loss(m_z_col = PEPMASS)

# all of the given losses (3) must be found
# returns the first row of toy_mgf
toy_mgf_nl %>%

filter_neutral_loss(losses = c(11.1111, 22.2222, 33.3333), min_found = 3)

# all of the given fragments (3) must be found
# returns an empty tibble because the third loss
# of row 1 (33.3333)
# is outside of the tolerance (10 ppm):
# Lower bound:
# 33.4333 - 33.4333 * 5 / 1000000 = 33.4333
# Upper bound:
# 33.4333 + 33.4333 * 5 / 1000000 = 33.4336
toy_mgf_nl %>%

filter_neutral_loss(losses = c(11.1111, 22.2222, 33.4333), min_found = 3)

# only 2 of the 3 fragments must be found
# returns the first row of toy_mgf
toy_mgf_nl %>%

filter_neutral_loss(losses = c(11.1111, 22.2222, 33.4333), min_found = 2)

impute_bpca Impute missing values using Bayesian PCA

Description

One of several PCA-based imputation methods. Basically a wrapper around pcaMethods::pca(method
= "bpca"). For a detailed discussion, see the vignette("pcaMethods") and vignette("missingValues",
"pcaMethods") as well as the References section.

Important Note

impute_bpca() depends on the pcaMethods package from Bioconductor. If metamorphr was
installed via install.packages(), dependencies from Bioconductor were not automatically in-
stalled. When impute_bpca() is called without the pcaMethods package installed, you should be
asked if you want to install pak and pcaMethods. If you want to use impute_bpca() you have to
install those. In case you run into trouble with the automatic installation, please install pcaMethods
manually. See pcaMethods – a Bioconductor package providing PCA methods for incomplete data.

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
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Usage

impute_bpca(data, n_pcs = 2, center = TRUE, scale = "none", direction = 2)

Arguments

data A tidy tibble created by read_featuretable.

n_pcs The number of PCs to calculate.

center Should data be mean centered? See prep for details.

scale Should data be scaled? See prep for details.

direction Either 1 or 2. 1 runs a PCA on a matrix with samples in columns and features
in rows and 2 runs a PCA on a matrix with features in columns and samples in
rows. Both are valid according to this discussion on GitHub but give different
results.

Value

A tibble with imputed missing values.

References

• H. R. Wolfram Stacklies, 2017, DOI 10.18129/B9.BIOC.PCAMETHODS.

• W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, Bioinformatics 2007, 23, 1164–1167,
DOI 10.1093/bioinformatics/btm069.

Examples

toy_metaboscape %>%
impute_bpca()

impute_global_lowest Impute missing values by replacing them with the lowest observed in-
tensity (global)

Description

Replace missing intensity values (NA) with the lowest observed intensity.

Usage

impute_global_lowest(data)

Arguments

data A tidy tibble created by read_featuretable.

https://github.com/hredestig/pcaMethods/issues/25
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Value

A tibble with imputed missing values.

Examples

toy_metaboscape %>%
impute_global_lowest()

impute_knn Impute missing values using nearest neighbor averaging

Description

Basically a wrapper function around impute::impute.knn. Imputes missing values using the k-th
nearest neighbor algorithm.

Note that the function ln-transforms the data prior to imputation and transforms it back to the origi-
nal scale afterwards. Please do not do it manually prior to calling impute_knn()! See References
for more information.

Important Note
impute_knn() depends on the impute package from Bioconductor. If metamorphr was installed
via install.packages(), dependencies from Bioconductor were not automatically installed. When
impute_knn() is called without the impute package installed, you should be asked if you want to
install pak and impute. If you want to use impute_knn() you have to install those. In case you run
into trouble with the automatic installation, please install impute manually. See impute: Imputation
for microarray data for instructions on manual installation.

Usage

impute_knn(data, quietly = TRUE, ...)

Arguments

data A tidy tibble created by read_featuretable.
quietly TRUE or FALSE. Should messages and warnings from impute.knn be printed to

the console?
... Additional parameters passed to impute.knn.

Value

A tibble with imputed missing values.

References

• Robert Tibshirani, Trevor Hastie, 2017, DOI 10.18129/B9.BIOC.IMPUTE.
• J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M.

Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer, Nat Med 2001, 7, 673–679, DOI
10.1038/89044.

https://bioconductor.org/packages/release/bioc/html/impute.html
https://bioconductor.org/packages/release/bioc/html/impute.html
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Examples

toy_metaboscape %>%
impute_knn()

impute_lls Impute missing values using Local Least Squares (LLS)

Description

Basically a wrapper around pcaMethods::llsImpute. For a detailed discussion, see the vignette("pcaMethods")
and vignette("missingValues", "pcaMethods") as well as the References section.

Important Note impute_lls() depends on the pcaMethods package from Bioconductor. If metamorphr
was installed via install.packages(), dependencies from Bioconductor were not automatically
installed. When impute_svd() is called without the pcaMethods package installed, you should be
asked if you want to install pak and pcaMethods. If you want to use impute_lls() you have to
install those. In case you run into trouble with the automatic installation, please install pcaMethods
manually. See pcaMethods – a Bioconductor package providing PCA methods for incomplete data
for instructions on manual installation.

Usage

impute_lls(
data,
correlation = "pearson",
complete_genes = FALSE,
center = FALSE,
cluster_size = 10

)

Arguments

data A tidy tibble created by read_featuretable.

correlation The method used to calculate correlations between features. One of "pearson",
"spearman" or "kendall". See cor.

complete_genes If TRUE only complete features will be used for regression, if FALSE, all will be
used.

center Should data be mean centered? See prep for details.

cluster_size The number of similar features used for regression.

Value

A tibble with imputed missing values.

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
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References

• H. R. Wolfram Stacklies, 2017, DOI 10.18129/B9.BIOC.PCAMETHODS.

• W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, Bioinformatics 2007, 23, 1164–1167,
DOI 10.1093/bioinformatics/btm069.

Examples

# The cluster size must be reduced because
# the data set is too small for the default (10)

toy_metaboscape %>%
impute_lls(complete_genes = TRUE, cluster_size = 5)

impute_lod Impute missing values by replacing them with the Feature ’Limit of
Detection’

Description

Replace missing intensity values (NA) by what is assumed to be the detector limit of detection (LoD).
It is estimated by dividing the Feature minimum by the provided denominator, usually 5. See the
References section for more information.

Usage

impute_lod(data, div_by = 5)

Arguments

data A tidy tibble created by read_featuretable.

div_by A numeric value that specifies by which number the Feature minimum will be
divided

Value

A tibble with imputed missing values.

References

LoD on OmicsForum

Examples

toy_metaboscape %>%
impute_lod()

https://omicsforum.ca/t/how-to-deal-with-missing-values/75
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impute_mean Impute missing values by replacing them with the Feature mean

Description

Replace missing intensity values (NA) with the Feature mean of non-NA values. For example, if
a Feature has the measured intensities NA, 1, NA, 3, 2 in samples 1-5, the intensities after
impute_mean() would be 2, 1, 2, 3, 2.

Usage

impute_mean(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with imputed missing values.

Examples

toy_metaboscape %>%
impute_mean()

impute_median Impute missing values by replacing them with the Feature median

Description

Replace missing intensity values (NA) with the Feature median of non-NA values. For example,
if a Feature has the measured intensities NA, 1, NA, 3, 2 in samples 1-5, the intensities after
impute_median() would be 2, 1, 2, 3, 2.

Usage

impute_median(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with imputed missing values.
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Examples

toy_metaboscape %>%
impute_median()

impute_min Impute missing values by replacing them with the Feature minimum

Description

Replace missing intensity values (NA) with the Feature minimum of non-NA values.

Usage

impute_min(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with imputed missing values.

Examples

toy_metaboscape %>%
impute_min()

impute_nipals Impute missing values using NIPALS PCA

Description

One of several PCA-based imputation methods. Basically a wrapper around pcaMethods::pca(method
= "nipals"). For a detailed discussion, see the vignette("pcaMethods") and vignette("missingValues",
"pcaMethods") as well as the References section.

Important Note

impute_nipals() depends on the pcaMethods package from Bioconductor. If metamorphr was
installed via install.packages(), dependencies from Bioconductor were not automatically in-
stalled. When impute_nipals() is called without the pcaMethods package installed, you should
be asked if you want to install pak and pcaMethods. If you want to use impute_nipals() you
have to install those. In case you run into trouble with the automatic installation, please install
pcaMethods manually. See pcaMethods – a Bioconductor package providing PCA methods for
incomplete data for instructions on manual installation.

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
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Usage

impute_nipals(data, n_pcs = 2, center = TRUE, scale = "none", direction = 2)

Arguments

data A tidy tibble created by read_featuretable.

n_pcs The number of PCs to calculate.

center Should data be mean centered? See prep for details.

scale Should data be scaled? See prep for details.

direction Either 1 or 2. 1 runs a PCA on a matrix with samples in columns and features
in rows and 2 runs a PCA on a matrix with features in columns and samples in
rows. Both are valid according to this discussion on GitHub but give different
results.

Value

A tibble with imputed missing values.

References

• H. R. Wolfram Stacklies, 2017, DOI 10.18129/B9.BIOC.PCAMETHODS.

• W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, Bioinformatics 2007, 23, 1164–1167,
DOI 10.1093/bioinformatics/btm069.

Examples

toy_metaboscape %>%
impute_nipals()

impute_ppca Impute missing values using Probabilistic PCA

Description

One of several PCA-based imputation methods. Basically a wrapper around pcaMethods::pca(method
= "ppca"). For a detailed discussion, see the vignette("pcaMethods") and vignette("missingValues",
"pcaMethods") as well as the References section. In the underlying function (pcaMethods::pca(method
= "ppca")), the order of columns has an influence on the outcome. Therefore, calling pcaMethods::pca(method
= "ppca") on a matrix and calling metamorphr::impute() on a tidy tibble might give different
results, even though they contain the same data. That is because under the hood, the tibble is trans-
formed to a matrix prior to calling pcaMethods::pca(method = "ppca") and you have limited
influence on the column order of the resulting matrix.

Important Note

impute_ppca() depends on the pcaMethods package from Bioconductor. If metamorphr was
installed via install.packages(), dependencies from Bioconductor were not automatically in-
stalled. When impute_ppca() is called without the pcaMethods package installed, you should be

https://github.com/hredestig/pcaMethods/issues/25
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asked if you want to install pak and pcaMethods. If you want to use impute_ppca() you have to
install those. In case you run into trouble with the automatic installation, please install pcaMethods
manually. See pcaMethods – a Bioconductor package providing PCA methods for incomplete data
for instructions on manual installation.

Usage

impute_ppca(
data,
n_pcs = 2,
center = TRUE,
scale = "none",
direction = 2,
random_seed = 1L

)

Arguments

data A tidy tibble created by read_featuretable.

n_pcs The number of PCs to calculate.

center Should data be mean centered? See prep for details.

scale Should data be scaled? See prep for details.

direction Either 1 or 2. 1 runs a PCA on a matrix with samples in columns and features
in rows and 2 runs a PCA on a matrix with features in columns and samples in
rows. Both are valid according to this discussion on GitHub but give different
results.

random_seed An integer used as seed for the random number generator.

Value

A tibble with imputed missing values.

References

• H. R. Wolfram Stacklies, 2017, DOI 10.18129/B9.BIOC.PCAMETHODS.

• W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, Bioinformatics 2007, 23, 1164–1167,
DOI 10.1093/bioinformatics/btm069.

Examples

toy_metaboscape %>%
impute_ppca()

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://github.com/hredestig/pcaMethods/issues/25
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impute_rf Impute missing values using random forest

Description

Basically a wrapper function around missForest::missForest. Imputes missing values using the
random forest algorithm.

Usage

impute_rf(data, random_seed = 1L, ...)

Arguments

data A tidy tibble created by read_featuretable.

random_seed A seed for the random number generator. Can be an integer or NULL (in case
no particular seed should be used) but for reproducibility reasons it is strongly
advised to provide an integer.

... Additional parameters passed to missForest.

Value

A tibble with imputed missing values.

References

• missForest on CRAN

• D. J. Stekhoven, P. Bühlmann, Bioinformatics 2012, 28, 112–118, DOI 10.1093/bioinformat-
ics/btr597.

Examples

toy_metaboscape %>%
impute_rf()

https://CRAN.R-project.org/package=missForest
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impute_svd Impute missing values using Singular Value Decomposition (SVD)

Description

Basically a wrapper around pcaMethods::pca(method = "svdImpute"). For a detailed discussion,
see the vignette("pcaMethods") and vignette("missingValues", "pcaMethods") as well as
the References section.

Important Note impute_svd() depends on the pcaMethods package from Bioconductor. If metamorphr
was installed via install.packages(), dependencies from Bioconductor were not automatically
installed. When impute_svd() is called without the pcaMethods package installed, you should be
asked if you want to install pak and pcaMethods. If you want to use impute_svd() you have to
install those. In case you run into trouble with the automatic installation, please install pcaMethods
manually. See pcaMethods – a Bioconductor package providing PCA methods for incomplete data
for instructions on manual installation.

Usage

impute_svd(data, n_pcs = 2, center = TRUE, scale = "none", direction = 2)

Arguments

data A tidy tibble created by read_featuretable.
n_pcs The number of PCs to calculate.
center Should data be mean centered? See prep for details.
scale Should data be scaled? See prep for details.
direction Either 1 or 2. 1 runs pcaMethods::pca(method = "svdImpute") on a matrix

with samples in columns and features in rows and 2 runs pcaMethods::pca(method
= "svdImpute") on a matrix with features in columns and samples in rows.
Both are valid according to this discussion on GitHub but give different results.

Value

A tibble with imputed missing values.

References

• H. R. Wolfram Stacklies, 2017, DOI 10.18129/B9.BIOC.PCAMETHODS.
• W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, Bioinformatics 2007, 23, 1164–1167,

DOI 10.1093/bioinformatics/btm069.
• O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, R.

B. Altman, Bioinformatics 2001, 17, 520–525, DOI 10.1093/bioinformatics/17.6.520.

Examples

toy_metaboscape %>%
impute_svd()

https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://github.com/hredestig/pcaMethods/issues/25
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impute_user_value Impute missing values by replacing them with a user-provided value

Description

Replace missing intensity values (NA) with a user-provided value (e.g., 1).

Usage

impute_user_value(data, value)

Arguments

data A tidy tibble created by read_featuretable.

value Numeric that replaces missing values

Value

A tibble with imputed missing values.

Examples

toy_metaboscape %>%
impute_user_value(value = 1)

join_metadata Join a featuretable and sample metadata

Description

Joins a featuretable and associated sample metadata. Basically a wrapper around left_join where
by = "Sample".

Usage

join_metadata(data, metadata)

Arguments

data A feature table created with read_featuretable

metadata Sample metadata created with create_metadata_skeleton

Value

A tibble with added sample metadata.
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Examples

toy_metaboscape %>%
join_metadata(toy_metaboscape_metadata)

normalize_cyclic_loess

Normalize intensities across samples using cyclic LOESS normaliza-
tion

Description

The steps the algorithm takes are the following:

1. log2 transform the intensities

2. Choose 2 samples to generate an MA-plot from

3. Fit a LOESS curve

4. Subtract half of the difference between the predicted value and the true value from the intensity
of sample 1 and add the same amount to the intensity of Sample 2

5. Repeat for all unique combinations of samples

6. Repeat all steps until the model converges or n_iter is reached.

Convergence is assumed if the confidence intervals of all LOESS smooths include the 0 line. If
fixed_iter = TRUE, the algorithm will perform exactly n_iter iterations. If fixed_iter = FALSE,
the algorithm will perform a maximum of n_iter iterations.

See the reference section for details.

Usage

normalize_cyclic_loess(
data,
n_iter = 3,
fixed_iter = TRUE,
loess_span = 0.7,
level = 0.95,
verbose = FALSE,
...

)

Arguments

data A tidy tibble created by read_featuretable.

n_iter The number of iterations to perform. If fixed_iter = TRUE exactly n_iter will
be performed. If fixed_iter = FALSE a maximum of n_iter will be performed
and the algorithm will stop whether convergence is reached or not.

fixed_iter Should a fixed number of iterations be performed?

https://en.wikipedia.org/wiki/MA_plot
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loess_span The span of the LOESS fit. A larger span produces a smoother line.

level The confidence level for the convergence criterion. Note that a a larger con-
fidence level produces larger confidence intervals and therefore the algorithm
stops earlier.

verbose TRUE or FALSE. Should messages be printed to the console?

... Arguments passed onto loess. For example, degree = 1, family = "symmetric", iterations = 4, surface = "direct"
produces a LOWESS fit.

Value

A tibble with intensities normalized across samples.

References

• B. M. Bolstad, R. A. Irizarry, M. Åstrand, T. P. Speed, Bioinformatics 2003, 19, 185–193,
DOI 10.1093/bioinformatics/19.2.185.

• Karla Ballman, Diane Grill, Ann Oberg, Terry Therneau, “Faster cyclic loess: normalizing
DNA arrays via linear models” can be found under https://www.mayo.edu/research/documents/biostat-
68pdf/doc-10027897, 2004.

• K. V. Ballman, D. E. Grill, A. L. Oberg, T. M. Therneau, Bioinformatics 2004, 20, 2778–2786,
DOI 10.1093/bioinformatics/bth327.

Examples

toy_metaboscape %>%
impute_lod() %>%
normalize_cyclic_loess()

normalize_factor Normalize intensities across samples using a normalization factor

Description

Normalization is done by dividing the intensity by a sample-specific factor (e.g., weight, protein
or DNA content). This function requires a sample-specific factor, usually supplied via the Factor
column from the sample metadata. See the Examples section for details.

Usage

normalize_factor(data, factor_column = .data$Factor)

Arguments

data A tidy tibble created by read_featuretable.

factor_column Which column contains the sample-specific factor? Usually factor_column =
Factor. Uses args_data_masking.
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Value

A tibble with intensities normalized across samples.

Examples

toy_metaboscape %>%
join_metadata(toy_metaboscape_metadata) %>%
normalize_factor()

normalize_median Normalize intensities across samples by dividing by the sample median

Description

Normalize across samples by dividing feature intensities by the sample median, making the median
1 in all samples. See References for more information.

Usage

normalize_median(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with intensities normalized across samples.

References

T. Ramirez, A. Strigun, A. Verlohner, H.-A. Huener, E. Peter, M. Herold, N. Bordag, W. Mellert,
T. Walk, M. Spitzer, X. Jiang, S. Sperber, T. Hofmann, T. Hartung, H. Kamp, B. Van Ravenzwaay,
Arch Toxicol 2018, 92, 893–906, DOI 10.1007/s00204-017-2079-6.

Examples

toy_metaboscape %>%
normalize_median()
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normalize_pqn Normalize intensities across samples using a Probabilistic Quotient
Normalization (PQN)

Description

This method was originally developed for H-NMR spectra of complex biofluids but has been
adapted for other ’omics data. It aims to eliminate dilution effects by calculating the most probable
dilution factor for each sample, relative to one or more reference samples. See references for more
details.

Usage

normalize_pqn(
data,
fn = "median",
normalize_sum = TRUE,
reference_samples = NULL,
ref_as_group = FALSE,
group_column = NULL

)

Arguments

data A tidy tibble created by read_featuretable.

fn Which function should be used to calculate the reference spectrum from the
reference samples? Can be either "mean" or "median".

normalize_sum A logical indicating whether a sum normalization (aka total area normalization)
should be performed prior to PQN. It is recommended to do so and other pack-
ages (e.g., KODAMA) also perform a sum normalization prior to PQN.

reference_samples

Either NULL or a character or character vector containing the sample(s) to cal-
culate the reference spectrum from. In the original publication, it is advised to
calculate the median of control samples. If NULL, all samples will be used to
calculate the reference spectrum.

ref_as_group A logical indicating if reference_samples are the names of samples or group(s).

group_column Only relevant if ref_as_group = TRUE. Which column should be used for group-
ing reference and non-reference samples? Usually group_column = Group. Uses
args_data_masking.

Value

A tibble with intensities normalized across samples.

https://rdrr.io/github/ricoderks/Rcpm/man/pqn.html
https://CRAN.R-project.org/package=KODAMA
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References

• F. Dieterle, A. Ross, G. Schlotterbeck, H. Senn, Anal. Chem. 2006, 78, 4281–4290, DOI
10.1021/ac051632c.

Examples

# specify the reference samples with their sample names
toy_metaboscape %>%

impute_lod() %>%
normalize_pqn(reference_samples = c("QC1", "QC2", "QC3"))

# specify the reference samples with their group names
toy_metaboscape %>%

join_metadata(toy_metaboscape_metadata) %>%
impute_lod() %>%
normalize_pqn(reference_samples = c("QC"), ref_as_group = TRUE, group_column = Group)

normalize_quantile_all

Normalize intensities across samples using standard Quantile Normal-
ization

Description

This is the standard approach for Quantile Normalization. Other sub-flavors are also available:

• normalize_quantile_group

• normalize_quantile_batch

• normalize_quantile_smooth

See References for more information.

Usage

normalize_quantile_all(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with intensities normalized across samples.

References

Y. Zhao, L. Wong, W. W. B. Goh, Sci Rep 2020, 10, 15534, DOI 10.1038/s41598-020-72664-6.
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Examples

toy_metaboscape %>%
normalize_quantile_all()

normalize_quantile_batch

Normalize intensities across samples using grouped Quantile Normal-
ization with multiple batches

Description

This function performs a Quantile Normalization on each sub-group and batch in the data set. It
therefore requires grouping information. See Examples for more information. This approach
might perform better than the standard approach, normalize_quantile_all, if sub-groups are
very different (e.g., when comparing cancer vs. normal tissue).

Other sub-flavors are also available:

• normalize_quantile_all

• normalize_quantile_batch

• normalize_quantile_smooth

See References for more information. Note that it is equivalent to the ’Discrete’ normalization in
Zhao et al. but has been renamed for internal consistency.

Usage

normalize_quantile_batch(
data,
group_column = .data$Group,
batch_column = .data$Batch

)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

batch_column Which column contains the batch information? Usually grouping_column =
Batch. Uses args_data_masking.

Value

A tibble with intensities normalized across samples.

References

Y. Zhao, L. Wong, W. W. B. Goh, Sci Rep 2020, 10, 15534, DOI 10.1038/s41598-020-72664-6.
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Examples

toy_metaboscape %>%
# Metadata, including grouping and batch information,
# must be added before using normalize_quantile_batch()
join_metadata(toy_metaboscape_metadata) %>%
normalize_quantile_batch(group_column = Group, batch_column = Batch)

normalize_quantile_group

Normalize intensities across samples using grouped Quantile Normal-
ization

Description

This function performs a Quantile Normalization on each sub-group in the data set. It therefore
requires grouping information. See Examples for more information. This approach might per-
form better than the standard approach, normalize_quantile_all, if sub-groups are very different
(e.g., when comparing cancer vs. normal tissue).

Other sub-flavors are also available:

• normalize_quantile_all

• normalize_quantile_batch

• normalize_quantile_smooth

See References for more information. Note that it is equivalent to the ’Class-specific’ normalization
in Zhao et al. but has been renamed for internal consistency.

Usage

normalize_quantile_group(data, group_column = .data$Group)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

Value

A tibble with intensities normalized across samples.

References

Y. Zhao, L. Wong, W. W. B. Goh, Sci Rep 2020, 10, 15534, DOI 10.1038/s41598-020-72664-6.
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Examples

toy_metaboscape %>%
# Metadata, including grouping information, must be added before using normalize_quantile_group()
join_metadata(toy_metaboscape_metadata) %>%
normalize_quantile_group(group_column = Group)

normalize_quantile_smooth

Normalize intensities across samples using smooth Quantile Normal-
ization (qsmooth)

Description

This function performs a smooth Quantile Normalization on each sub-group in the data set (qs-
mooth). It therefore requires grouping information. See Examples for more information. This
approach might perform better than the standard approach, normalize_quantile_all, if sub-
groups are very different (e.g., when comparing cancer vs. normal tissue). The result lies some-
where between normalize_quantile_group and normalize_quantile_all. Basically a re-implementation
of Hicks et al. (2018).

Usage

normalize_quantile_smooth(
data,
group_column = .data$Group,
rolling_window = 0.05

)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

rolling_window normalize_quantile_smooth uses a rolling window median to eliminate iso-
lated outliers. This argument specifies the size of the rolling window as a frac-
tion of the number of unique features in data. For example, if there are 100
features in data and rolling_window = 0.05, the rolling median will be calcu-
lated from 5 features. Set rolling_window = 0 to disable.

Value

A tibble with intensities normalized across samples.
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References

• S. C. Hicks, K. Okrah, J. N. Paulson, J. Quackenbush, R. A. Irizarry, H. C. Bravo, Biostatistics
2018, 19, 185–198, DOI 10.1093/biostatistics/kxx028.

• Y. Zhao, L. Wong, W. W. B. Goh, Sci Rep 2020, 10, 15534, DOI 10.1038/s41598-020-72664-
6.

Examples

toy_metaboscape %>%
# Metadata, including grouping information, must be added before using normalize_quantile_group()
join_metadata(toy_metaboscape_metadata) %>%
normalize_quantile_smooth(group_column = Group)

normalize_ref Normalize intensities across samples using a reference feature

Description

Performs a normalization based on a reference feature, for example an internal standard. Divides
the Intensities of all features by the Intensity of the reference feature in that sample and multiplies
them with a constant value, making the Intensity of the reference feature the same in each sample.

Usage

normalize_ref(
data,
reference_feature,
identifier_column,
reference_feature_intensity = 1

)

Arguments

data A tidy tibble created by read_featuretable.
reference_feature

An identifier for the reference feature. Must be unique. It is recommended to
use the UID.

identifier_column

The column in which to look for the reference feature. It is recommended to use
identifier_column = UID

reference_feature_intensity

Either a constant value with which the intensity of each feature is multiplied
or a function (e.g., mean, median, min, max). If a function is provided, it
will use that function on the Intensities of the reference feature in all sam-
ples before normalization and multiply the intensity of each feature with that
value after dividing by the Intensity of the reference feature. For example, if
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reference_feature_intensity = mean, it calculates the mean of the Intensi-
ties of the reference features across samples before normalization. It then di-
vides the Intensity of each feature by the Intensity of the reference feature in
that sample. Finally, it multiplies each Intensity with the mean of the Intensities
of the reference features prior to normalization.

Value

A tibble with intensities normalized across samples.

Examples

# Divide by the reference feature and make its Intensity 1000 in each sample
toy_metaboscape %>%

impute_lod() %>%
normalize_ref(reference_feature = 2, identifier_column = UID, reference_feature_intensity = 1000)

# Divide by the reference feature and make its Intensity the mean of intensities
# of the reference features before normalization
toy_metaboscape %>%

impute_lod() %>%
normalize_ref(reference_feature = 2, identifier_column = UID, reference_feature_intensity = mean)

normalize_sum Normalize intensities across samples by dividing by the sample sum

Description

Normalize across samples by dividing feature intensities by the sum of all intensities in a sample,
making the sum 1 in all samples.

Important Note

Intensities of individual features will be very small after this normalization approach. It is therefore
advised to multiply all intensities with a fixed number (e.g., 1000) after normalization. See this
discussion on OMICSForum.ca and the examples below for further information.

Usage

normalize_sum(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with intensities normalized across samples.

https://omicsforum.ca/t/sum-normalization-needs-clarification-or-potentially-has-an-issue/3244
https://omicsforum.ca/t/sum-normalization-needs-clarification-or-potentially-has-an-issue/3244
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Examples

# Example 1: Normalization only
toy_metaboscape %>%

normalize_sum()

# Example 2: Multiply with 1000 after normalization
toy_metaboscape %>%

normalize_sum() %>%
dplyr::mutate(Intensity = .data$Intensity * 1000)

plot_pca Draws a scores or loadings plot or performs calculations necessary to
draw them manually

Description

Performs PCA and creates a Scores or Loadings plot. Basically a wrapper around pcaMethods::pca
The plot is drawn with ggplot2 and can therefore be easily manipulated afterwards (e.g., changing
the theme or the axis labels). Please note that the function is intended to be easy to use and beginner
friendly and therefore offers limited ability to fine-tune certain parameters of the resulting plot. If
you wish to draw the plot yourself, you can set return_tbl = TRUE. In this case, a tibble is returned
instead of a ggplot2 object which you can use to create a plot yourself.

Important Note

plot_pca() depends on the pcaMethods package from Bioconductor. If metamorphr was in-
stalled via install.packages(), dependencies from Bioconductor were not automatically in-
stalled. When plot_pca() is called without the pcaMethods package installed, you should be
asked if you want to install pak and pcaMethods. If you want to use plot_pca() you have to in-
stall those. In case you run into trouble with the automatic installation, please install pcaMethods
manually. See pcaMethods – a Bioconductor package providing PCA methods for incomplete data
for instructions on manual installation.

Usage

plot_pca(
data,
method = "svd",
what = "scores",
n_pcs = 2,
pcs = c(1, 2),
center = TRUE,
group_column = NULL,
name_column = NULL,
return_tbl = FALSE,
verbose = FALSE

)

https://ggplot2.tidyverse.org/
https://www.bioconductor.org/packages/release/bioc/html/pcaMethods.html
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Arguments

data A tidy tibble created by read_featuretable.

method A character specifying one of the available methods ("svd", "nipals", "rnipals",
"bpca", "ppca", "svdImpute", "robustPca", "nlpca", "llsImpute", "llsImputeAll").
If the default is used ("svd") an SVD PCA will be done, in case data does not
contain missing values, or a NIPALS PCA if data does contain missing values.

what Specifies what should be returned. Either "scores" or "loadings".

n_pcs The number of PCs to calculate.

pcs A vector containing 2 integers that specifies the PCs to plot. Only relevant if
return_tbl = FALSE. The following condition applies: max(pcs) <= n_pcs.

center Should data be mean centered? See prep for details.

group_column Either NULL or a column in data (e.g., group_column = Group). If provided, the
dots in the scores plot will be colored according to their group. Only relevant if
what = "scores".

name_column Either NULL or a column in data (e.g., name_column = Feature). If provided,
feature names are preserved in the resulting tibble. Only relevant if what =
"loadings" & return_tbl = TRUE.

return_tbl A logical. If FALSE, returns a ggplot2 object, if TRUE returns a tibble which can
be used to draw the plot manually to have more control.

verbose Should outputs from pca be printed to the console?

Value

Either a Scores or Loadings Plot in the form of a ggplot2 object or a tibble.

Examples

# Draw a Scores Plot
toy_metaboscape %>%

impute_lod() %>%
join_metadata(toy_metaboscape_metadata) %>%
plot_pca(what = "scores", group_column = Group)

# Draw a Loadings Plot
toy_metaboscape %>%

impute_lod() %>%
join_metadata(toy_metaboscape_metadata) %>%
plot_pca(what = "loadings", name_column = Feature)
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plot_volcano Draws a Volcano Plot or performs calculations necessary to draw one
manually

Description

Performs necessary calculations (i.e., calculate p-values and log2-fold changes) and creates a basic
Volcano Plot. The plot is drawn with ggplot2 and can therefore be easily manipulated afterwards
(e.g., changing the theme or the axis labels). Please note that the function is intended to be easy
to use and beginner friendly and therefore offers limited ability to fine-tune certain parameters of
the resulting plot. If you wish to draw the plot yourself, you can set return_tbl = TRUE. In this
case, a tibble is returned instead of a ggplot2 object which you can use to create a plot yourself.
A Volcano Plot is used to compare two groups. Therefore grouping information must be provided.
See join_metadata for more information.

Usage

plot_volcano(
data,
group_column,
name_column,
groups_to_compare,
batch_column = NULL,
batch = NULL,
log2fc_cutoff = 1,
p_value_cutoff = 0.05,
colors = list(sig_up = "darkred", sig_down = "darkblue", not_sig_up = "grey",
not_sig_down = "grey", not_sig = "grey"),

adjust_p = FALSE,
log2_before = FALSE,
return_tbl = FALSE,
...

)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually group_column = Group.
Uses args_data_masking.

name_column Which column contains the feature names? Can for example be name_column =
UID or name_column = Feature. Uses args_data_masking.

groups_to_compare

Names of the groups which should be compared as a character vector. Those are
the group names in the group_column. They are usually provided in the form
of a metadata tibble and joined via join_metadata.

https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://ggplot2.tidyverse.org/
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batch_column Which column contains the batch information? Usually grouping_column =
Batch. Only relevant if data contains multiple batches. For example, if data
contains 2 batches and each batch contains measurements of separate controls,
group_column and batch arguments should be provided. Otherwise controls
of both batches will be considered when calculating the p-value and log2 fold
change. Uses args_data_masking.

batch The names of the batch(es) that should be included when calculating p-value
and log2 fold change.

log2fc_cutoff A numeric. What cutoff should be used for the log2 fold change? Traditionally,
this is set to 1 which corresponds to a doubling or halving of intensity or area
compared to a control. This is only important for assignment to groups and
colors defined in the colors argument.

p_value_cutoff A numeric. What cutoff should be used for the p-value? Traditionally, this is set
to 0.05. This is only important for assignment to groups and colors defined in
the colors argument. Note that this is not the -log10 transformed value.

colors A named list for coloring the dots in the Volcano Plot or NULL in case the points
should not be colored. The list must contain colors for the following groups:
sig_up, sig_down, not_sig_up, not_sig_down and not_sig.

adjust_p Should the p-value be adjusted? Can be either FALSE, (the default) in case no
adjustment should be made or any or the name from p.adjust.methods (e.g.,
adjust_p = "fdr").

log2_before A logical. Should the data be log2 transformed prior to calculating the p-values?

return_tbl A logical. If FALSE, returns a ggplot2 object, if TRUE returns a tibble which can
be used to draw the plot manually to have more control.

... Arguments passed on to t.test. If none are provided (the default), a Welch
Two Sample t-test will be performed.

Value

Either a Volcano Plot in the form of a ggplot2 object or a tibble.

Examples

# returns a Volcano Plot in the form of a ggplot2 object
toy_metaboscape %>%

impute_lod() %>%
join_metadata(toy_metaboscape_metadata) %>%
plot_volcano(

group_column = Group,
name_column = Feature,
groups_to_compare = c("control", "treatment")

)

# returns a tibble to draw the plot manually
toy_metaboscape %>%

impute_lod() %>%
join_metadata(toy_metaboscape_metadata) %>%
plot_volcano(
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group_column = Group,
name_column = Feature,
groups_to_compare = c("control", "treatment"),
return_tbl = TRUE

)

read_featuretable Read a feature table into a tidy tibble

Description

Basically a wrapper around readr::read_delim() but performs some initial tidying operations
such as gather() rearranging columns. The label_col will be renamed to Feature.

Usage

read_featuretable(file, delim = ",", label_col = 1, metadata_cols = NULL, ...)

Arguments

file A path to a file but can also be a connection or literal data.

delim The field separator or delimiter. For example "," in csv files.

label_col The index or name of the column that will be used to label Features. For example
an identifier (e.g., KEGG, CAS, HMDB) or a m/z-RT pair.

metadata_cols The index/indices or name(s) of column(s) that hold additional feature metadata
(e.g., retention times, additional identifiers or m/z values).

... Additional arguments passed on to readr::read_delim()

Value

A tidy tibble.

References

• H. Wickham, J. Stat. Soft. 2014, 59, DOI 10.18637/jss.v059.i10.

• H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund, A.
Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K. Müller, J. Ooms, D.
Robinson, D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, H. Yutani, JOSS
2019, 4, 1686, DOI 10.21105/joss.01686.

• “12 Tidy data | R for Data Science,” can be found under https://r4ds.had.co.nz/tidy-data.
html, 2023.

https://r4ds.had.co.nz/tidy-data.html
https://r4ds.had.co.nz/tidy-data.html
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Examples

# Read a toy dataset in the format produced with Bruker MetaboScape (Version 2021).
featuretable_path <- system.file("extdata", "toy_metaboscape.csv", package = "metamorphr")

# Example 1: Provide indices for metadata_cols
featuretable <- read_featuretable(featuretable_path, metadata_cols = 2:5)

featuretable

# Example 2: Provide a name for label_col and indices for metadata_cols
featuretable <- read_featuretable(

featuretable_path,
label_col = "m/z",
metadata_cols = c(1, 2, 4, 5)

)

featuretable

# Example 3: Provide names for both, label_col and metadata_cols
featuretable <- read_featuretable(

featuretable_path,
label_col = "m/z",
metadata_cols = c("Bucket label", "RT", "Name", "Formula")

)

featuretable

read_mgf Read a MGF file into a tidy tibble

Description

MGF files allow the storage of MS/MS spectra. With this function they can be read into a tidy tibble.
Each variable is stored in a column and each ion (observation) is stored in a separate row. MS/MS
spectra are stored in a list column named MSn. Please note that MGF files are software-specific so
the variables and their names may vary. This function was developed with the GNPS file format
exported from mzmine in mind.

Usage

read_mgf(file, show_progress = TRUE)

Arguments

file The path to the MGF file.

show_progress A logical indicating whether the progress of the import should be printed to
the console. Only important for large MGF files.

https://www.matrixscience.com/help/data_file_help.html
https://fiehnlab.ucdavis.edu/projects/lipidblast/mgf-files
https://mzio.io/mzmine-news/
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Value

A tidy tibble holding MS/MS spectra.

Examples

mgf_path <- system.file("extdata", "toy_mgf.mgf", package = "metamorphr")
read_mgf(mgf_path)

scale_auto Scale intensities of features using autoscale

Description

Scales the intensities of all features using

x̃ij =
xij − xi

si

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j, feature
i before scaling, xi is the mean of intensities of feature i across all samples and si is the standard
deviation of intensities of feature i across all samples. In other words, it subtracts the mean intensity
of a feature across samples from the intensities of that feature in each sample and divides by the
standard deviation of that feature. For more information, see the reference section.

Usage

scale_auto(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with autoscaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
scale_auto()
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scale_center Center intensities of features around zero

Description

Centers the intensities of all features around zero using

x̃ij = xij − xi

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j, feature
i before scaling and xi is the mean of intensities of feature i across all samples. In other words, it
subtracts the mean intensity of a feature across samples from the intensities of that feature in each
sample. For more information, see the reference section.

Usage

scale_center(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with intensities scaled around zero.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
scale_center()
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scale_level Scale intensities of features using level scaling

Description

Scales the intensities of all features using

x̃ij =
xij − xi

xi

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j, feature
i before scaling and xi is the mean of intensities of feature i across all samples

In other words, it performs centering (scale_center) and divides by the feature mean, thereby
focusing on the relative intensity.

Usage

scale_level(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with level scaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
impute_lod() %>%
scale_level()
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scale_pareto Scale intensities of features using Pareto scaling

Description

Scales the intensities of all features using

x̃ij =
xij − xi√

si

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j, feature i
before scaling, xi is the mean of intensities of feature i across all samples and

√
si is the square root

of the standard deviation of intensities of feature i across all samples. In other words, it subtracts
the mean intensity of a feature across samples from the intensities of that feature in each sample
and divides by the square root of the standard deviation of that feature. For more information, see
the reference section.

Usage

scale_pareto(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with autoscaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
scale_pareto()
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scale_range Scale intensities of features using range scaling

Description

Scales the intensities of all features using

x̃ij =
xij − xi

xi,max − xi,min

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j,
feature i before scaling, xi is the mean of intensities of feature i across all samples, xi,max is the
maximum intensity of feature i across all samples and xi,min is the minimum intensity of feature i
across all samples. In other words, it subtracts the mean intensity of a feature across samples from
the intensities of that feature in each sample and divides by the range of that feature. For more
information, see the reference section.

Usage

scale_range(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with range scaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
scale_range()
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scale_vast Scale intensities of features using vast scaling

Description

Scales the intensities of all features using

x̃ij =
xij − xi

si
· xi

si

where x̃ij is the intensity of sample j, feature i after scaling, xij is the intensity of sample j,
feature i before scaling, xi is the mean of intensities of feature i across all samples and si is the
standard deviation of intensities of feature i across all samples. Note that xi

si
= 1

CV where CV is the
coefficient of variation across all samples. scale_vast_grouped is a variation of this function that
uses a group-specific coefficient of variation. In other words, it performs autoscaling (scale_auto)
and divides by the coefficient of variation, thereby reducing the importance of features with a poor
reproducibility.

Usage

scale_vast(data)

Arguments

data A tidy tibble created by read_featuretable.

Value

A tibble with vast scaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

• J. Sun, Y. Xia, Genes & Diseases 2024, 11, 100979, DOI 10.1016/j.gendis.2023.04.018.

Examples

toy_metaboscape %>%
scale_vast()
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scale_vast_grouped Scale intensities of features using grouped vast scaling

Description

A variation of scale_vast but uses a group-specific coefficient of variation and therefore requires
group information. See scale_vast and the References section for more information.

Usage

scale_vast_grouped(data, group_column = .data$Group)

Arguments

data A tidy tibble created by read_featuretable.

group_column Which column should be used for grouping? Usually grouping_column = Group.
Uses args_data_masking.

Value

A tibble with vast scaled intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
join_metadata(toy_metaboscape_metadata) %>%
scale_vast_grouped()

summary_featuretable General information about a feature table and sample-wise summary

Description

Information about a feature table. Prints information to the console (number of samples, number
of features and if applicable number of groups, replicates and batches) and returns a sample-wise
summary as a list.
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Usage

summary_featuretable(
data,
n_samples_max = 5,
n_features_max = 5,
n_groups_max = 5,
n_batches_max = 5

)

Arguments

data A tidy tibble created by read_featuretable.

n_samples_max How many Samples should be printed to the console?

n_features_max How many Features should be printed to the console?

n_groups_max How many groups should be printed to the console?

n_batches_max How many Batches should be printed to the console?

Value

A sample-wise summary as a list.

Examples

toy_metaboscape %>%
join_metadata(toy_metaboscape_metadata) %>%
summary_featuretable()

toy_metaboscape A small toy data set created from a feature table in MetaboScape style

Description

The raw feature table is also included. This tibble can be reproduced with metamorphr::read_featuretable(system.file("extdata",
"toy_metaboscape.csv", package = "metamorphr"), metadata_cols = 2:5).

Usage

toy_metaboscape

Format

toy_metaboscape:
A data frame with 110 rows and 8 columns:

UID A unique identifier for each Feature. This column is automatically generated by metamorphr::read_featuretable()
when the feature table is imported.
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Feature A label given to each Feature for easier identification. The column of the original feature
table that is used to generate the Feature column is specified with the label_col argument
of metamorphr::read_featuretable().

Sample Sample name. Column names in the original feature table.
Intensity Measured intensity (or area).
RT Retention time. Feature metadata and therefore not really necessary.
m/z Mass over charge. Feature metadata and therefore not really necessary.
Name Feature name. Feature metadata and therefore not really necessary.
Formula Chemical formula. Feature metadata and therefore not really necessary. ...

Source

This data set contains fictional data!

toy_metaboscape_metadata

Sample metadata for the fictional dataset toy_metaboscape

Description

Data was generated with metamorphr::create_metadata_skeleton() and can be reproduced
with metamorphr::toy_metaboscape %>% create_metadata_skeleton().’

Usage

toy_metaboscape_metadata

Format

toy_metaboscape_metadata:
A data frame with 11 rows and 5 columns:

Sample The sample name
Group To which group does the samples belong? For example a treatment or a background.

Note that additional columns with additional grouping information can be freely added if
necessary.

Replicate The replicate.
Batch The batch in which the samples were prepared or measured.
Factor A sample-specific factor, for example dry weight or protein content. ...

Source

This data set contains fictional data!
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toy_mgf A small toy data set containing MSn spectra

Description

Data was generated with metamorphr::read_mgf() and can be reproduced with This tibble can be
reproduced with metamorphr::read_mgf(system.file("extdata", "toy_mgf.mgf", package
= "metamorphr")).

Usage

toy_mgf

Format

toy_mgf:
A data frame with 3 rows and 5 columns:

VARIABLEONE A fictional variable.
VARIABLETWO A fictional variable.
VARIABLETHREE A fictional variable.
PEPMASS The precursor ion m/z.
MSn A list column containing MSn spectra. ...

Source

This data set contains fictional data!

transform_log Transforms the intensities by calculating their log

Description

Log-transforms intensities. The default (base = 10) calculates the log10. This transformation can
help reduce heteroscedasticity. See references for more information.

Usage

transform_log(data, base = 10)

Arguments

data A tidy tibble created by read_featuretable.

base Which base should be used for the log-transformation. The default (10) means
that log10 values of the intensities are calculated.
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Value

A tibble with log-transformed intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
impute_lod() %>%
transform_log()

transform_power Transforms the intensities by calculating their nth root

Description

Calculates the nth root of intensities with x^(1/n). The default (n = 2) calculates the square root.
This transformation can help reduce heteroscedasticity. See references for more information.

Usage

transform_power(data, n = 2)

Arguments

data A tidy tibble created by read_featuretable.

n The nth root to calculate.

Value

A tibble with power-transformed intensities.

References

• R. A. Van Den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. Van Der Werf,
BMC Genomics 2006, 7, 142, DOI 10.1186/1471-2164-7-142.

Examples

toy_metaboscape %>%
impute_lod() %>%
transform_power()
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