--- title: "Create maps of the Indian subcontinent" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Create maps of the Indian subcontinent} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, dpi = 200, comment = "#>" ) ``` The goal of mapindia is to simplify mapping of the Indian subcontinent. It has convenient functions for plotting choropleths, visualizing spatial data, and handling state/district codes. **Note:** The 3-digit district codes were merged with the 2-digit state codes to create a 5-digit district code. ## Installation To install mapindia from CRAN: ```{r} #| label: cran #| eval: false install.packages("mapindia") ``` You can install the development version of mapindia from [GitHub](https://github.com/) with: ```{r} #| label: github #| eval: false # install.packages("pak") pak::pak("shubhamdutta26/mapindia") ``` ## Example Plot a basic map of the Indian subcontinent with states and districts: ```{r states-dist} library(mapindia) library(ggplot2) library(patchwork) states <- plot_india("states") + geom_sf(fill= "antiquewhite") + theme(panel.grid.major = element_line(color = gray(.5), linetype = "dashed", linewidth = 0.2), panel.background = element_rect(fill = "aliceblue")) districts <- plot_india("districts") + geom_sf(fill= "gray") + theme(panel.grid.major = element_line(color = gray(.5), linetype = "dashed", linewidth = 0.2), panel.background = element_rect(fill = "aliceblue")) states + districts ``` Visualize zones such as the Central or Eastern Zonal Councils: ```{r zones, warning=FALSE} central <- plot_india("states", include = .central, exclude = "UK", labels = TRUE) + geom_sf(fill= "antiquewhite") east <- plot_india("states", include = .east, labels = FALSE) central + east ``` Visualize individual states such as the West Bengal or Tamil Nadu: ```{r states, warning=FALSE} mh <- plot_india("districts", include = "MH") tn <- plot_india("state", include = "Tamil Nadu", labels = FALSE) mh + tn ``` Use your data for visualizations as well: ```{r data, warning=FALSE} statepop2011 <- plot_india("states", data = statepop, values = "pop_2011") + scale_fill_continuous(low = "blue", high = "yellow", guide = "none") wbpop2011 <- plot_india("districts", data = wb_2011, values = "pop_2011", include = "WB") + scale_fill_continuous(low = "green", high = "red", guide = "none") statepop2011 + wbpop2011 ```