## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 6 ) ## ----setup-------------------------------------------------------------------- library(manureshed) ## ----quick_maps, eval=FALSE--------------------------------------------------- # # This creates all maps automatically # results <- quick_analysis( # scale = "huc8", # year = 2016, # nutrients = "nitrogen", # include_wwtp = TRUE, # output_dir = "my_maps" # ) # # # Maps are saved in the output directory ## ----get_results, eval=FALSE-------------------------------------------------- # # Run analysis to get data for mapping # results <- run_builtin_analysis( # scale = "county", # year = 2016, # nutrients = c("nitrogen", "phosphorus"), # include_wwtp = TRUE # ) ## ----classification_maps, eval=FALSE------------------------------------------ # # Basic nitrogen map # nitrogen_map <- map_agricultural_classification( # data = results$agricultural, # nutrient = "nitrogen", # classification_col = "N_class", # title = "Agricultural Nitrogen Classifications" # ) # # # View the map # print(nitrogen_map) # # # Save the map # save_plot(nitrogen_map, "nitrogen_classes.png", width = 10, height = 8) # # # Phosphorus map # phosphorus_map <- map_agricultural_classification( # data = results$agricultural, # nutrient = "phosphorus", # classification_col = "P_class", # title = "Agricultural Phosphorus Classifications" # ) ## ----combined_maps, eval=FALSE------------------------------------------------ # # Map showing effect of adding WWTP data # combined_nitrogen <- map_agricultural_classification( # data = results$integrated$nitrogen, # nutrient = "nitrogen", # classification_col = "combined_N_class", # title = "Nitrogen with WWTP Integration" # ) # # combined_phosphorus <- map_agricultural_classification( # data = results$integrated$phosphorus, # nutrient = "phosphorus", # classification_col = "combined_P_class", # title = "Phosphorus with WWTP Integration" # ) ## ----facility_maps, eval=FALSE------------------------------------------------ # # Map showing WWTP locations colored by size # facility_map <- map_wwtp_points( # wwtp_sf = results$wwtp$nitrogen$spatial_data, # nutrient = "nitrogen", # title = "Nitrogen WWTP Facilities" # ) # # print(facility_map) ## ----influence_maps, eval=FALSE----------------------------------------------- # # Map showing how much WWTP contributes to each area # influence_map <- map_wwtp_influence( # data = results$integrated$nitrogen, # nutrient = "nitrogen", # title = "WWTP Contribution to Total Nitrogen" # ) # # print(influence_map) ## ----comparison_plots, eval=FALSE--------------------------------------------- # # Create summary data # summary_data <- create_classification_summary( # data = results$integrated$nitrogen, # agricultural_col = "N_class", # combined_col = "combined_N_class" # ) # # # Before/after bar chart # comparison_plot <- plot_before_after_comparison( # data = summary_data, # nutrient = "nitrogen", # title = "Effect of Adding WWTP Data" # ) # # print(comparison_plot) # # # Impact ratios # impact_plot <- plot_impact_ratios( # data = summary_data, # title = "WWTP Impact on Classifications" # ) # # # Absolute changes # change_plot <- plot_absolute_changes( # data = summary_data, # title = "Change in Number of Counties" # ) ## ----network_plots, eval=FALSE------------------------------------------------ # # Add coordinates to the data # centroids <- add_centroid_coordinates(results$integrated$nitrogen) # # # Calculate how often different classes are next to each other # transitions <- calculate_transition_probabilities( # centroids, "combined_N_class" # ) # # # Create network plot # create_network_plot( # transition_df = transitions, # nutrient = "nitrogen", # analysis_type = "WWTP + Agricultural", # output_path = "nitrogen_network.png" # ) # # # View the transition table # print(transitions) ## ----save_options, eval=FALSE------------------------------------------------- # # Different resolutions and formats # save_plot(nitrogen_map, "map_web.png", width = 8, height = 6, dpi = 150) # Web # save_plot(nitrogen_map, "map_print.png", width = 10, height = 8, dpi = 300) # Print # save_plot(nitrogen_map, "map_publication.png", width = 12, height = 9, dpi = 600) # Publication # # # Vector formats # save_plot(nitrogen_map, "map_vector.pdf", width = 10, height = 8) ## ----custom_colors, eval=FALSE------------------------------------------------ # # Use different colors # custom_map <- map_agricultural_classification( # data = results$agricultural, # nutrient = "nitrogen", # classification_col = "N_class", # title = "Custom Colors" # ) + # ggplot2::scale_fill_manual( # values = c("Source" = "red", "Sink_Deficit" = "blue", # "Sink_Fertilizer" = "green", "Within_County" = "yellow", # "Excluded" = "gray"), # labels = c("Source", "Sink Deficit", "Sink Fertilizer", # "Within County", "Excluded") # ) ## ----county_scale, eval=FALSE------------------------------------------------- # # County analysis # county_results <- run_builtin_analysis(scale = "county", year = 2016, # nutrients = "nitrogen", include_wwtp = TRUE) # # county_map <- map_agricultural_classification( # county_results$agricultural, "nitrogen", "N_class", # "County-Level Nitrogen Classifications" # ) ## ----huc8_scale, eval=FALSE--------------------------------------------------- # # Watershed analysis # huc8_results <- run_builtin_analysis(scale = "huc8", year = 2016, # nutrients = "nitrogen", include_wwtp = TRUE) # # huc8_map <- map_agricultural_classification( # huc8_results$agricultural, "nitrogen", "N_class", # "Watershed-Level Nitrogen Classifications" # ) ## ----huc2_scale, eval=FALSE--------------------------------------------------- # # Regional analysis # huc2_results <- run_builtin_analysis(scale = "huc2", year = 2016, # nutrients = "nitrogen", include_wwtp = TRUE) # # huc2_map <- map_agricultural_classification( # huc2_results$agricultural, "nitrogen", "N_class", # "Regional-Level Nitrogen Classifications" # ) ## ----state_maps, eval=FALSE--------------------------------------------------- # # Create maps for a specific state # iowa_results <- run_state_analysis( # state = "IA", # scale = "county", # year = 2016, # nutrients = "nitrogen", # include_wwtp = TRUE # ) # # iowa_map <- map_agricultural_classification( # iowa_results$agricultural, "nitrogen", "N_class", # "Iowa Nitrogen Classifications" # ) # # # Quick state maps # texas_maps <- quick_state_analysis( # state = "TX", # scale = "huc8", # year = 2015, # nutrients = "phosphorus", # create_maps = TRUE # ) ## ----multi_panel, eval=FALSE-------------------------------------------------- # # Create side-by-side comparison # library(ggplot2) # library(gridExtra) # or cowplot # # # Create two maps # map1 <- map_agricultural_classification( # results$agricultural, "nitrogen", "N_class", "Agricultural Only" # ) # # map2 <- map_agricultural_classification( # results$integrated$nitrogen, "nitrogen", "combined_N_class", "With WWTP" # ) # # # Combine them # combined_figure <- grid.arrange(map1, map2, ncol = 2) # # # Save combined figure # ggsave("combined_maps.png", combined_figure, width = 16, height = 8) ## ----map_tips, eval=FALSE----------------------------------------------------- # # For presentations (screen) # save_plot(map, "presentation.png", width = 12, height = 8, dpi = 150) # # # For reports (print) # save_plot(map, "report.png", width = 10, height = 8, dpi = 300) # # # For journals (high quality) # save_plot(map, "journal.png", width = 8, height = 6, dpi = 600) ## ----file_management, eval=FALSE---------------------------------------------- # # Organize your outputs # create_maps_folder <- function(analysis_name) { # dir.create(analysis_name, showWarnings = FALSE) # dir.create(file.path(analysis_name, "maps"), showWarnings = FALSE) # dir.create(file.path(analysis_name, "plots"), showWarnings = FALSE) # dir.create(file.path(analysis_name, "data"), showWarnings = FALSE) # } # # create_maps_folder("nitrogen_analysis_2016") ## ----troubleshooting, eval=FALSE---------------------------------------------- # # If maps are blank, check your data # quick_check(results) # # # If colors are wrong, check classification column names # table(results$agricultural$N_class) # # # If coordinates are missing # centroids <- add_centroid_coordinates(results$agricultural) # # # If maps are too slow, try smaller scale or fewer years