Package 'linearModel'

October 13, 2022

Type Package
Title Linear Model Functions
Version 1.0.2
Date 2021-12-15
Author Jared Studyvin [aut, cre]
Depends R (>= 3.6.0)
Imports stats, utils
Maintainer Jared Studyvin <studyvinstat@gmail.com></studyvinstat@gmail.com>
Description Functions to access and test results from a linear model.
License MIT + file LICENSE
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-01-04 14:10:02 UTC

R topics documented:

5
4

anovaTable

Description

Produces the overall ANOVA table where the model sum of squares are not particulated into their parts.

Usage

```
anovaTable(object, ...)
```

Arguments

object	lm or aov model object
	currently ignored

Value

Object of class anova and data.frame

Examples

```
data(depression)
```

```
## MLR model
modMLR <- lm(depress~trauma+control,data=depression)
anovaTable(modMLR)</pre>
```

```
## ANOVA model
depression$gender <- factor(depression$gender)
depression$history <- factor(depression$history)
modAOV <- lm(depress~-1+gender+history+gender:history,data=depression)
anovaTable(modAOV)</pre>
```

contrastTest Test Contrasts

Description

Contrast testing function. Designed to test contrasts of parameter estimates from a linear model.

contrastTest

Usage

```
contrastTest(
  estVec,
  n,
  dfModel,
  dfError,
 mse,
 C = NULL,
  test = c("scheffe", "bonferroni", "hsd", "lsd"),
```

Arguments

)

estVec	numeric vector of parameter estimates for comparison
n	numeric vector indicating the sample size for the parameter estimates, if a single value is given it is assumed to apply to all estiamtes
dfModel	numeric value for the model degrees of freedom
dfError	numeric value for the error or residual degrees of freedom
mse	numeric value for the mean squared error from the model
С	numeric matrix, each row is a contrast that should sum to zero, see details
test	character, indicating which testing method should be used, see details
	currently ignored

Details

The test argument can be one of the following: 'scheffe','bonferroni','hsd', or 'lsd'. 'hsd' is the Tukey HSD test. 'Isd' is th Fisher LSD test. The other two are the Scheffe test and Bonferroni adjustment.

The matrix C is the contrast matrix. Each row is a separate contrast. The number of columns of C must be equal to the length(estVec). Row names for C are retained in the output, but they are not required.

Value

Object of class anova and data.frame

Examples

```
data(genericData)
```

```
mod <- lm(Y~A,data=genericData)</pre>
dfModel <- anovaTable(mod)['Model','df']</pre>
dfError <- anovaTable(mod)['Residual','df']</pre>
mse <- anovaTable(mod)['Residual','MS']</pre>
meanVec <- aggregate(Y~A,FUN=mean,data=genericData)$Y</pre>
n <- aggregate(Y~A,FUN=length,data=genericData)$Y</pre>
```

```
## can add names for ease of interpretation with the output
names(meanVec) <- c('group 1','group 2','group 3')
contrastTest(estVec=meanVec,n=n,dfModel=dfModel,dfError=dfError,mse=mse,test='hsd')
## each group vs the mean of the other two
C <- rbind(c(1,-0.5,-0.5),c(-0.5,1,-0.5),c(-0.5,-0.5,1))
## row names are not required but are helpful
row.names(C) <- c('1 vs 2+3','2 vs 1+3','3 vs 1+2')
contrastTest(estVec=meanVec,n=n,dfModel=dfModel,dfError=dfError,mse=mse,C=C,test='scheffe')
```

depression

Self Reported Depression

Description

Self reported level of depression and other associated metrics.

Usage

data(depression)

Format

An object of class data. frame with 50 rows and 13 columns.

Details

This is a fictious dataset useful for teaching how to use and interpret linear statistical models. The variables are:

- educate Level of Education: (1) professional degree (non-college), (2) 2 years of college, (3) 2+ years of college, but not a BS degree, (4) BS degree, (5) MS degree
- income Annual Income: 1 = \$10,0001 to \$19,999; 2 = \$20,000 to \$29,999; ... 9 = \$90,000 to \$99,999; 10 = \$100,000 or more
- **trauma** Experience of Trauma; Percent of Life Events Viewed as Traumatic: 0 = 0%, 1 = 10%, 2 = 20%, ..., 9 = 90%, 10 = 100%
- **satisfac** Satisfied with your Life: 0 = No, 1 = Yes
- **control** Feeling of Control; How much do you feel in control: 0 = Not at all, 1 = A Little, 2 = Some, 3 = A Lot, 4 = Completely
- **history** Family History of Depression: 0 = No, 1 = Yes
- exercise Weekly Amount of Exercise: 0 = None, 1 = 1 Hour, 2 = 2 Hours, 3 = 3 Hours, 4 = 4 Hours, 5 = 5 or more Hours
- **mhpg** 3-methoxy-4-hydroxyphenylethyleneglycol, Depression Related Chemical Secreted in Urine; milligrams secreted per 24 hour period, labeled as mg/24h: 0 = 0 mg/24h, 1 = 100 mg/24h,..., 9 = 900 mg/24h, 10 = 1000+ mg/24h

genericData

- **sleep** Amount of Sleep Problems: 0 = None, 1 = 10% of the time, ..., 9 = 90% of the time, 10 = 100% of the time
- **depress** Perceived Level of Depression: 0 = None, 1 = 10% of the time, ..., 9 = 90% of the time, 10 = 100% of the time
- **depressYes** Do I consider myself depressed: 0 = No, 1 = Yes
- welbeing Feeling of Well Being; how often do you feel good about yourself: 0 = None, 1 = 10% of the time, ..., 9 = 90% of the time, 10 = 100% of the time

gender Your Sex: 0 = Male, 1 = Female

genericData

Generic Data Set

Description

Generic data set with four ratio predictors (X1,X2,X3,X4), two categorical predictors (A,B) and one ratio response variable (Y).

Usage

data(depression)

Format

An object of class data. frame with 60 rows and 7 columns.

Details

This is a fictious dataset useful for teaching how to use and interpret linear statistical models.

Index

* datasets
 depression, 4
 genericData, 5

anovaTable, 2

contrastTest, 2

 ${\tt depression}, {\tt 4}$

genericData, 5