--- title: "multilingual-support" vignette: > %\VignetteIndexEntry{multilingual-support} %\VignetteEngine{quarto::html} %\VignetteEncoding{UTF-8} knitr: opts_chunk: collapse: true comment: '#>' --- ```{r} #| label: setup library(kuzco) test_img <- file.path(system.file(package = "kuzco"), "img/test_img.jpg") ``` ### multilingual support Some models are capable of returning outputs in multiple languages. As a result, it became necessary to include a language specification to ensure certain models responded in English. Once this step was in place, switching the output language for specific computer vision tasks became straightforward & easy to implement. #### English Results ```r llm_image_classification( llm_model = "qwen2.5vl", image = test_img, backend = 'ellmer', provider = 'ollama', language = 'English' ) ``` ```r #> image_classification primary_object secondary_object #> 1 Portrait of a puppy puppy #> image_description #> 1 A close-up portrait of a puppy with black and white fur is the main subject, with a red plaid blanket in the background. #> image_colors image_proba_names #> 1 ["#000000", "#FFFFFF", "#FF0000", "#0000FF", "#A52A2A"] #> image_proba_values #> 1 [0.6, 0.15, 0.08, 0.07, 0.02] ``` #### Spanish Results ```r llm_image_classification( llm_model = "qwen2.5vl", image = test_img, backend = 'ellmer', provider = 'ollama', language = 'Spanish' ) ``` ```r #> image_classification primary_object secondary_object #> 1 perrito perrito pañal #> image_description #> 1 Un adorable perrito de color negro y blanco está echado en la cama. El perrito está mirando directamente a la cámara. Se ven texturas sutiles en el pelaje y un fondo de colcha de cuadros rojos. #> image_colors image_proba_names #> 1 [#000000, #FFFFFF, #D60000, #FF0000, #0000FF] perrito #> image_proba_values #> 1 :[0.8,0.0,0.0,0.0,0.0] ``` #### German Results ```r llm_image_classification( llm_model = "qwen2.5vl", image = test_img, backend = 'ellmer', provider = 'ollama', language = 'German' ) ``` ```r #> image_classification primary_object secondary_object #> 1 Kinderbetten Hund #> image_description #> 1 Der Bildinhalt zeigt einen Hund, der in der Nähe eines Kinderbetts liegt. #> image_colors #> 1 [⌘A87, ⌘AADE, ⌘545417, ⌘545417, ⌘AADE, ⌘A87, ⌘38182A, ⌘A87] #> image_proba_names #> 1 Hund, Bett, Tier, Kind, Hundebett, Tiergesicht, Fell, Haar, Tieraugen #> image_proba_values #> 1 [0.42, 0.106, 0.08, 0.075, 0.045, 0.035, 0.034, 0.09, 0.07] ``` #### Chinese Results ```r llm_image_classification( llm_model = "qwen2.5vl", image = test_img, backend = 'ellmer', provider = 'ollama', language = 'Mandarin Chinese' ) ``` ```r #> image_classification primary_object secondary_object #> 1 pet portrait puppy #> image_description #> 1 这是一张黑白相间的小狗的特写照片,它有着独特的眼睛和湿润的鼻子。 #> image_colors image_proba_names #> 1 ["#990000", "#0000FF", "#FFC0CB", "#000000", "#FFFFFF"] [ #> image_proba_values #> 1 [ ```