## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(kidney.epi) head(ktx.data) ## ----------------------------------------------------------------------------- # call ktx.kdpi.optn function, and directly set parameters values ktx.kdpi.optn(age = 60, height_cm = 168, weight_kg = 93, ethnicity = "White", hypertension = "yes", diabetes = "no", causeofdeath = "roadinjury", creatinine = 1.4, hcv = "negative", dcdstatus = "no", creatinine_units = "mg/dl", return_output_type = "KDRI_Rao") ## ----------------------------------------------------------------------------- # copy internal dataframe ktx.data from the kidney.epiR package to your data frame mydata <- ktx.data # calculate Kidney Donor Profile Index (KDPI) using the latest available OPTN mapping values mydata$kdpi <- ktx.kdpi.optn ( age = mydata$don.age, height_cm = mydata$don.height, weight_kg = mydata$don.weight, ethnicity = mydata$don.ethnicity, hypertension = mydata$don.hypertension, diabetes = mydata$don.diabetes, causeofdeath = mydata$don.causeofdeath, creatinine = mydata$don.creatinine, hcv = mydata$don.hcv, dcdstatus = mydata$don.dcd, creatinine_units = "mg/dl", # which param to return return_output_type = "KDPI", # customize all labels used in the dataframe # label for Afroamerican ethnicity label_afroamerican = c ("Afroamerican"), # label for a positive history of hypertension label_hypertension_positive = c ("Yes", "YES"), # label for an unknown history of hypertension label_hypertension_unknown = "N/A", # if missing values defined unknown history then use "NA" (with quotes!) # label for a positive history of diabetes label_diabetes_positive = c ("Yes", "YES"), # label for an unknown history of diabetes label_diabetes_unknown = "N/A", # if missing values defined unknown history then use "NA" (with quotes!) # label for a cause of death due to cerebrovascular/stroke label_causeofdeath = c ("cerebrovascular"), # label for a positive hcv status label_hcv_positive = c ("positive"), # label for an unknown, not done, indeterminate, or pending hcv status label_hcv_unknown = "NA", # if missing values defined unknown history then use "NA" (with quotes!) # label for a donation after circulatory death status label_dcdstatus = c ("Yes") ) # show descriptive stat for the calculated values summary(mydata$kdpi) ## ----------------------------------------------------------------------------- ktx.kdpi.optn.show.years()