## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(kernopt) ## ----fig.cap='Estimates (gray lines) of count distributions of weight (dg) (black lines) of fish by using optimal and Epanechnikov discrete kernels with bandwidth parameter ($h_{cv}$) from the cross-validation procedure. Integrated Squared Error (ISE) was also calculated.'---- # Data data("fish_data", package = "kernopt") y <- fish_data$weight data1 <- as.data.frame(table(y)) x <- as.numeric(as.character(data1[, 1])) freq_weight <- as.numeric(as.character(data1[, 2])) f0 <- freq_weight / sum(freq_weight) # Optimal kernel H <- seq((max(y) - min(y)) / 200, (max(y) - min(y)) / 2, length.out = 50) k <- 1 hcv_opt_k1 <- cv_bandwidth(kernel = "optimal", y, H, k = 1) fn_opt_k1 <- estim_kernel(kernel = "optimal", x, hcv_opt_k1, y, k = 1) ISE_opt_k1 <- sum((fn_opt_k1 - f0)^2) # Epanechnikov H <- seq(2, 10, 1) hcv_epanech <- cv_bandwidth(kernel = "epanech", y, H) fn_epanech <- estim_kernel(kernel = "epanech", x, hcv_epanech, y, k = NULL) ISE_epanech <- sum((fn_epanech - f0)^2) # Graph oldpar <- par(mfrow = c(1, 2)) plot( x, f0, col = "black", axes = F, lwd = 3, ylab = "Probability", xlab = "Weight (dg)", ylim = c(0, 0.06), xlim = c(41, 132), type = "h", main = "(a) Optimal k=1 - ISE=0.002, (hcv=0.94)", cex.axis = 1.70, cex.lab = 1.70 ) axis(1, at = x, cex.axis = 1.70, cex.lab = 1.70 ) axis(2) box() points( x + 0.4, fn_opt_k1, lwd = 3, col = "grey", lty = 1, type = "h" ) plot( x, f0, col = "black", axes = F, lwd = 3, ylab = "Probability", xlab = "Weight (dg)", ylim = c(0, 0.06), xlim = c(41, 132), type = "h", main = "(b) Epanechnikov - ISE=0.0033 (hcv=9)", cex.axis = 1.70, cex.lab = 1.70 ) axis(1, at = x, cex.axis = 1.70, cex.lab = 1.70 ) axis(2) box() points( x + 0.4, fn_epanech, lwd = 3, col = "grey", lty = 1, type = "h" ) # Restore option par(oldpar)