--- title: "Introduction to iClusterVB" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to iClusterVB} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # iClusterVB iClusterVB allows for fast integrative clustering and feature selection for high dimensional data. Using a variational Bayes approach, its key features - clustering of mixed-type data, automated determination of the number of clusters, and feature selection in high-dimensional settings - address the limitations of traditional clustering methods while offering an alternative and potentially faster approach than MCMC algorithms, making __iClusterVB__ a valuable tool for contemporary data analysis challenges. There is a simulated dataset included as a list in the package that we can use to illustrate iClusterVB. ### Data pre-processing ```{r sim_data_example} library(iClusterVB) # sim_data comes with the iClusterVB package. dat1 <- list( gauss_1 = sim_data$continuous1_data[c(1:20, 61:80, 121:140, 181:200), 1:75], gauss_2 = sim_data$continuous2_data[c(1:20, 61:80, 121:140, 181:200), 1:75], poisson_1 = sim_data$count_data[c(1:20, 61:80, 121:140, 181:200), 1:75]) dist <- c( "gaussian", "gaussian", "poisson" ) ``` ### Running the model ```{r model} fit_iClusterVB <- iClusterVB( mydata = dat1, dist = dist, K = 4, initial_method = "VarSelLCM", VS_method = 1, max_iter = 50 ) ``` ### Summary of the Model ```{r summary} # We can obtain a summary using summary() summary(fit_iClusterVB) ``` ### Generic Plots ```{r plots, fig.width=6, fig.height=6} plot(fit_iClusterVB) ``` ### Probability of Inclusion Plots ```{r piplot, fig.width=6, fig.height=6} # The `piplot` function can be used to visualize the probability of inclusion piplot(fit_iClusterVB) ``` ### Heat maps to visualize the clusters ```{r chmap, echo = TRUE, fig.width=6, fig.height=6} # The `chmap` function can be used to display heat maps for each data view chmap(fit_iClusterVB, rho = 0, cols = c("green", "blue", "purple", "red"), scale = "none") ```