--- title: "Hemodynamic Response Function Modeling with `hrf`" author: "Damon Pham & Amanda Mejia" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true keep_md: true vignette: > %\VignetteIndexEntry{Hemodynamic Response Function Modeling with `hrf`} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r include=FALSE} library(knitr) knitr::opts_chunk$set(autodep = TRUE, cache = FALSE) ``` `hrf` is an R package for modeling the hemodynamic response function (HRF). It also includes functions for constructing a design matrix for a general linear model (GLM), and for comparing multiple GLMs with different design matrices. ```{r} library(hrf) ``` # HRF modeling ```{r format="jpg"} TR <- 2.2 upsample <- 1000 upsample <- round(TR*upsample)/TR # TR*upsample must be an int u <- seq(0, 30, by=1/upsample) #go out 30 sec HRF <- HRF_calc(t = u, deriv=0) dHRF <- HRF_calc(t = u, deriv=1) matplot(cbind(HRF, dHRF), type="l", lwd=2, col=c("black", "blue")) ``` # Design matrix construction ```{r} # Read in data. events <- read.csv("../tests/data/motor1-events.tsv", sep="\t") # Convert 3-col data.frame to list of 2-col data.frames events$trial_type <- as.factor(events$trial_type) trials <- levels(events$trial_type) events <- setNames(lapply( trials, function(x){events[events$trial_type==x,seq(2)]} ), trials) ``` ```{r} des <- make_design(events, nTime=370, TR=0.72) ``` ```{r} des ``` ```{r fig.width=5.5, format="jpg"} plot(des) ```