Package 'hrf'

January 30, 2025

Type Package

Title Hemodynamic Response Function

```
Version 0.1.3
Maintainer Amanda Mejia <mandy.mejia@gmail.com>
Description Computes the hemodynamic response function (HRF) for task
      functional magnetic resonance imaging (fMRI) data. Also includes functions
      for constructing a design matrix from task fMRI event timings, and for
      comparing multiple design matrices in a general linear model (GLM). A
      wrapper function is provided for GLM analysis of CIFTI-format data. Lastly,
      there are supporting functions which provide visual summaries of the
      HRFs and design matrices.
License GPL-3
URL https://github.com/mandymejia/hrf
BugReports https://github.com/mandymejia/hrf/issues
Depends R (>= 3.6.0)
Imports car, ciftiTools (>= 0.15.0), fMRItools, Matrix, matrixStats,
Suggests covr, ggplot2, knitr, rmarkdown, testthat (>= 3.0.0), tidyr,
      spelling
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.2
Language en-US
NeedsCompilation no
Author Amanda Mejia [aut, cre],
      Damon Pham [ctb] (<a href="https://orcid.org/0000-0001-7563-4727">https://orcid.org/0000-0001-7563-4727</a>),
      David Bolin [ctb],
      Yu (Ryan) Yue [ctb],
      Daniel Spencer [aut] (<a href="https://orcid.org/0000-0002-9705-3605">https://orcid.org/0000-0002-9705-3605</a>),
      Sarah Ryan [ctb]
Repository CRAN
Date/Publication 2025-01-30 19:10:02 UTC
```

2 aic_Param

Contents

ic_F	Param aic	
ex		20
	verbose_Param	19
	TR_Param_BayesGLM	
	surfaces_Param_BayesGLM	19
	summary.BfMRI_design	18
	session_names_Param	18
	scrub_Param_BayesGLM	17
	scale_BOLD_Param	17
	resamp_res_Param_BayesGLM	17
	plot_design	16
	plot.BfMRI_design	15
	nuisance_Param_BayesGLM	15
	multiGLM_fun	14
	multiGLM	12
	mean_var_Tol_Param	12
	mask_Param_vertices	11
	make_design	9
	HRF_main	9
	HRF_calc	8
	HRF96	7
	hpf_Param_BayesGLM	7
	field_names_Param	6
	faces Param	6
	do QC	5
	design_Param_BayesGLM	5
	Connectome_Workbench_Description	5
	cderiv	4
	brainstructures_Param_BayesGLM	4
	BOLD_Param_BayesGLM	3
	ar smooth Param	3
	ar order Param	2 3
	AIC FAIAIII	

Description

aic

Arguments

aic

(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.

ar_order_Param 3

ar_order_Param

ar_order

Description

ar_order

Arguments

ar_order

(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If \emptyset , do not prewhiten. Default: 6.

For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.

ar_smooth_Param

ar_smooth

Description

ar_smooth

Arguments

ar_smooth

(For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 to not smooth the estimates. Default: 5.

BOLD_Param_BayesGLM

BOLD

Description

BOLD

Arguments

BOLD

fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.

If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spatial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.

4 cderiv

brainstructures_Param_BayesGLM brainstructures

Description

brainstructures

Arguments

brainstructures

Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).

cderiv

Central derivative

Description

Take the central derivative of numeric vectors by averaging the forward and backward differences.

Usage

```
cderiv(x)
```

Arguments

Х

A numeric matrix, or a vector which will be converted to a single-column matrix.

Value

A matrix or vector the same dimensions as x, with the derivative taken for each column of x. The first and last rows may need to be deleted, depending on the application.

Examples

```
x \leftarrow cderiv(seq(5))
stopifnot(all(x == c(.5, 1, 1, 1, .5)))
```

Connectome_Workbench_Description

Connectome Workbench

Description

Connectome Workbench

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench.

design_Param_BayesGLM design

Description

design

Arguments

design

A numeric matrix or data.frame, or a "BayesfMRI_design" object from make_design. Can also be an array where the third dimension is the same length as the number of data locations, to model each location with its own design.

do_QC

Mask out invalid data

Description

Mask out data locations that are invalid (missing data, low mean, or low variance) for any session.

Usage

```
do_QC(BOLD, meanTol = 1e-06, varTol = 1e-06, verbose = TRUE)
```

Arguments

BOLD A session-length list of $T \times V$ numeric BOLD data.

meanTol, varTol Tolerance for mean and variance of each data location. Locations which do not

meet these thresholds are masked out of the analysis. Defaults: 1e-6.

verbose Print messages counting how many locations are removed? Default: TRUE.

6 field_names_Param

Value

A logical vector indicating locations that are valid across all sessions.

Examples

```
nT <- 30
nV <- 400
BOLD1 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD1[,seq(30,50)] <- NA
BOLD2 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD2[,65] <- BOLD2[,65] / 1e10
BOLD <- list(sess1=BOLD1, sess2=BOLD2)
do_QC(BOLD)</pre>
```

faces_Param

faces

Description

faces

Arguments

faces

An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.

field_names_Param

field_names

Description

field_names

Arguments

field_names

(Optional) Names of fields represented in design matrix.

hpf_Param_BayesGLM hpf

Description

hpf

Arguments

hpf

Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.

Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.

HRF96

Canonical (double-gamma) HRF (old one from SPM96, Glover)

Description

Calculate the HRF from a time vector and parameters. Optionally compute the first or second derivative of the HRF instead.

Usage

```
HRF96(t, deriv = 0, a1 = 6, b1 = 0.9, a2 = 12, b2 = 0.9, c = 0.35)
```

Arguments

t	time vector
deriv	θ (default) for the HRF, 1 for the first derivative of the HRF, or 2 for the second derivative of the HRF.
a1	delay of response. Default: 6
b1	response dispersion. Default: 0.9
a2	delay of undershoot. Default: 12
b2	dispersion of undershoot. Default: 0.9
С	scale of undershoot. Default: 0.35

Value

HRF vector (or dHRF, or d2HRF) corresponding to time

8 HRF_calc

Examples

```
upsample <- 100
HRF96(seq(0, 30, by=1/upsample))</pre>
```

HRF_calc

Canonical HRF and Derivatives

Description

Calculate the HRF from a time vector and parameters, or its derivative with respect to delay or dispersion.

Usage

```
HRF_calc(
    t,
    deriv = 0,
    a1 = 6,
    b1 = 1,
    a2 = 16/6 * a1 * sqrt(b1),
    b2 = b1,
    c = 1/6,
    o = 0
)
```

Arguments

t	time vector (in units of seconds)
deriv	\emptyset (default) for the HRF, 1 for the delay derivative of the HRF, or 2 for the dispersion derivative of the HRF.
a1	delay of response. Default: 6
b1	response dispersion. Default: 1
a2	delay of undershoot. Default: 16/6 * a1 * sqrt(b1) = 16
b2	dispersion of undershoot. Default: b1 = 1
С	scale of undershoot. Default: 1/6
0	onset of response. Default: 0

Value

HRF vector (or dHRF, or d2HRF) corresponding to time vector t

Examples

```
samples_per_sec <- 200
nsec <- 50
HRF_calc(seq(nsec*samples_per_sec)/samples_per_sec)</pre>
```

HRF_main 9

HRF_main	Canonical (double-gamma) HRF	

Description

Calculate the HRF from a time vector and parameters. Optionally compute the first or second derivative of the HRF instead. Form of HRF is similar to SPM but here the response and undershoot are scaled so the difference of the HRFs peaks at 1 and -c

Usage

```
HRF_{main}(t, a1 = 6, b1 = 1, a2 = NULL, b2 = NULL, c = 1/6, o = 0)
```

Arguments

t	time vector (in seconds). Must be equally spaced.
a1	delay of response. Default: 6
b1	response dispersion. Default: 1
a2	delay of undershoot. Default: 16/6*a1 = 16
b2	dispersion of undershoot. Default: b1 = 1
С	scale of undershoot. Default: 1/6
0	onset of response (in seconds). Default: 0

Value

HRF vector corresponding to time vector t

Examples

```
upsample <- 100
HRF_main(seq(0, 30, by=1/upsample))</pre>
```

make_design Make design matrix	make_design	Make design matrix	
--------------------------------	-------------	--------------------	--

Description

Make the design matrix for the GLM, from the task information.

10 make_design

Usage

```
make_design(
   EVs,
   nTime,
   TR,
   dHRF = 0,
   upsample = 100,
   onset = NULL,
   offset = NULL,
   scale_design = TRUE,
   onsets_sep = FALSE,
   offsets_sep = FALSE,
   verbose = TRUE,
   ...
)
```

Arguments

EVs

The explanatory variables i.e. the task stimulus information, from which a design matrix will be constructed. This is a list where each entry represents a task as a matrix of onsets (first column) and durations (second column) for each stimuli (each row) of the task, in seconds. List names should be the task names. nTime and TR are required.

An example of a properly-formatted EVs is: on_s1 <- list(taskA=cbind(on=c(1,9,17), dr=rep(1,3)), taskB=cbind(on=c(3,27), dr=rep(5,2))). In this example, there are two tasks: the first has three 1s-long stimuli, while the second has two 5s-long stimuli.

nTime

the number of timepoints (volumes) in the task fMRI data.

TR

the temporal resolution of the data, in seconds.

dHRF

Controls the extent of HRF derivatives modeling.

Set to 0 to only model the main HRF regressor (default), and not include its derivatives; set to 1 to model the temporal derivative too; or, set to 2 to model both the temporal and dispersion derivatives. If dHRF==0, there is one design column (field) per task. If dHRF==1, there are two fields per task. And if dHRF==2, there are three fields per task.

If there are several tasks and dHRF>0, the total number of design matrix columns may exceed five, which may require large computation times with INLA. The analysis can be adjusted by modeling the derivatives as nuisance signals rather than as fields. To do so, move the corresponding columns from the design matrix to the nuisance argument for BayesGLM.

upsample

Upsample factor for convolving stimulus boxcar or stick function with canonical HRF. Default: 100.

onset, offset

Add task regressors indicating the onset and/or offset of each event block? Provide the names of the tasks as a character vector. All onsets (or offsets) across the specified tasks will be represented by one additional column in the design matrix. The task names must match the names of EVs. Can also be "all" to use all tasks.

mask_Param_vertices 11

Onsets/offset modeling is only compatible with a block design experiment. An error will be raised if the events in EVs do not have duration greater than one

second.

scale_design Scale the columns of the design matrix? Default: TRUE.

onsets_sep, offsets_sep

Model the onsets (onsets_sep) or offsets (offsets_sep) separately for each task? Default: FALSE, to model all onsets together, or all offsets together, as a single fold in the decision

single field in the design.

verbose Print diagnostic messages? Default: TRUE.

... Additional arguments to HRF_calc.

Value

A "BfMRI_design" object: a list with elements

design The volumes by fields design matrix. Column names are field names.

field_names The name of each task from the provided onsets.

dHRF The input dHRF parameter.

HRF_info Additional HRF modeling results.

Examples

```
 EVs \leftarrow list(taskA=cbind(on=c(1,9,17), dr=rep(1,3)), taskB=cbind(on=c(3,27), dr=rep(5,2))) \\ TR \leftarrow .72 \\ nTime \leftarrow ceiling(65/TR) \\ make\_design(EVs, nTime, TR)
```

mask_Param_vertices mask: vertices

Description

mask: vertices

Arguments

mask A length V logical vector indicating if each vertex is within the input mask.

12 multiGLM

mean_var_Tol_Param

mean and variance tolerance

Description

mean and variance tolerance

Arguments

meanTol, varTol Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

multiGLM

multiGLM for CIFTI

Description

Performs classical Bayesian GLM for task fMRI activation with CIFTI-format data, evaluating multiple design matrices. Includes the pre-processing steps of nuisance regression. Supports single-session analysis only.

Usage

```
multiGLM(
  BOLD,
  design,
  brainstructures = c("left", "right"),
  TR = NULL,
  resamp_res = 10000,
  hpf = NULL,
  nuisance = NULL,
  design_canonical = NULL,
  verbose = 1,
  meanTol = 1e-06,
  varTol = 1e-06
)
```

Arguments

BOLD

fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.

If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spatial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.

13 multiGLM

design A 3D numeric array that is locations by fields by designs.

brainstructures

Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).

TR Temporal resolution of the data, in seconds.

For cortex spatial model. The number of vertices to which each cortical surface resamp_res should be resampled, or NULL to not resample.

For computational feasibility, a value of 10000 (default) or lower is recommended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.

Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.

Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.

(Optional) A $T \times N_{nuis}$ matrix of nuisance signals, where T is the number of timepoints and N is the number of nuisance signals, or a list of these for multi-session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regressors, HRF derivatives not being modeled as tasks, and other sources of

Detrending/high-pass filtering is accomplished by adding DCT bases to the nuisance matrix; see the parameters hpf and DCT.

Do not add spike regressors for scrubbing to the nuisance matrix. Rather, provide these in scrub so that their corresponding timepoints are also removed from the BOLD data after nuisance regression.

design_canonical

TO DO

noise.

verbose 1 (default) to print occasional updates during model computation; 2 for occa-

sional updates as well as running INLA in verbose mode (if Bayes), or 0 for no

printed updates.

meanTol, varTol Tolerance for mean and variance of each data location. Locations which do not

meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Value

An object of class "mGLM": a list with elements

brainstructures data. frame summarizing the spatial features of each brain structure modeled.

fields data.frame with the name, related task, and HRF_order of each field.

hpf

nuisance

14 multiGLM_fun

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/getconnectome-workbench.

multiGLM_fun

multiGLM0

Description

Performs classical GLM for task fMRI activation, comparing multiple designs

Usage

```
multiGLM_fun(
 BOLD,
  design,
 nuisance = NULL,
 design_canonical = NULL,
 verbose = 1,
 meanTol = 1e-06,
  varTol = 1e-06
)
```

Arguments

BOLD, design, nuisance

Session-length list of numeric matrices/arrays, each with volumes along the first dimension.

design_canonical

TO DO

verbose

1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no

printed updates.

meanTol, varTol

Tolerance for mean, variance and SNR of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for mean and variance, 50 for SNR.

Value

A list with elements

```
bestmodel ...
Fstat ...
pvalF ...
```

```
nuisance_Param_BayesGLM
```

nuisance

Description

nuisance

Arguments

nuisance

(Optional) A $T \times N_{nuis}$ matrix of nuisance signals, where T is the number of timepoints and N is the number of nuisance signals, or a list of these for multi-session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regressors, HRF derivatives not being modeled as tasks, and other sources of noise.

Detrending/high-pass filtering is accomplished by adding DCT bases to the nuisance matrix; see the parameters hpf and DCT.

Do not add spike regressors for scrubbing to the nuisance matrix. Rather, provide these in scrub so that their corresponding timepoints are also removed from the BOLD data after nuisance regression.

plot.BfMRI_design

S3 method: use view_xifti to plot a "BGLM" object

Description

```
S3 method: use view_xifti to plot a "BGLM" object
```

Usage

```
## S3 method for class 'BfMRI_design'
plot(x, ...)
```

Arguments

```
x An object of class "BfMRI_design".... Additional arguments to plot_design.
```

Value

Result of the call to plot_design

plot_design

plot_design

Plot design matrix

Description

Plot design matrix

Plot design with lineplot

Plot design with imageplot

Usage

```
plot_design(design, method = c("lineplot", "imageplot"), ...)

plot_design_line(
    design,
    colors = "Set1",
    linetype = "solid",
    linewidth = 0.7,
    alpha = 0.8
)

plot_design_image(design)
```

Arguments

colors

design The timepoints by fields design matrix or data.frame.

method "lineplot" (default) or "imageplot".

.. Additional arguments to plot_design_line or plot_design_image.

...

The name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), the name of a viridisLite palette, or a character vector of colors.

Default: "Set1".

linetype, linewidth, alpha

Parameters for ggplot2::geom_line. Defaults: "solid" linetype, 0.7 linewidth and 0.8 alpha. linetype can also be a vector of options with length matching

the number of fields in design.

Value

A ggplot

A ggplot

A ggplot

resamp_res_Param_BayesGLM

resamp_res

Description

resamp_res

Arguments

resamp_res

For cortex spatial model. The number of vertices to which each cortical surface should be resampled, or NULL to not resample.

For computational feasibility, a value of 10000 (default) or lower is recommended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.

scale_BOLD_Param

scale_BOLD

Description

scale_BOLD

Arguments

scale_BOLD

Controls scaling the BOLD response at each location.

"mean": Scale the data to percent local signal change.

"sd": Scale the data by local standard deviation.

"none": Center the data but do not scale it.

scrub_Param_BayesGLM scrub

Description

scrub

Arguments

scrub

(Optional) A $T \times N_{scrub}$ matrix of spike regressors (one 1 value at the timepoint to scrub, and 0 for all other values), or a logical vector indicating the timepoints to scrub (TRUE to scrub, and FALSE to keep). For multi-session data, a session-length list of such matrices or logical vectors.

The spike regressors will be included in the nuisance regression, and afterwards the timepoints indicated in scrub will be removed from the BOLD data and design matrix.

```
session_names_Param session_names
```

Description

session_names

Arguments

session_names

The names of the task-fMRI BOLD sessions, for multi-session analysis. If not provided here, will be inferred from names(BOLD), inferred from names(design), or generated automatically, in that order.

Description

Summary method for class "BfMRI_design"

Usage

```
## S3 method for class 'BfMRI_design'
summary(object, ...)

## S3 method for class 'summary.BfMRI_design'
print(x, ...)

## S3 method for class 'BfMRI_design'
print(x, ...)
```

Arguments

```
object Object of class "BfMRI_design".
... further arguments passed to or from other methods.
x Object of class "summary.BfMRI_design".
```

Value

```
A "summary.BfMRI_design" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.
```

surfaces_Param_BayesGLM

surfaces

Description

surfaces

Arguments

surfL, surfR

For cortex spatial model. Left and right cortex surface geometry in GIFTI format ("*.surf.gii"). These can be a file path to a GIFTI file or a "surf" object from ciftiTools.

Surfaces can alternatively be provided through the \$surf metadata in BOLD if it is "xifti" data. If neither are provided, by default the HCP group-average fs_LR inflated surfaces included in ciftiTools will be used for the cortex spatial model.

TR_Param_BayesGLM

TR

Description

TR

Arguments

TR

Temporal resolution of the data, in seconds.

verbose_Param

verbose

Description

verbose

Arguments

verbose

1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

Index

```
aic_Param, 2
                                                scrub_Param_BayesGLM, 17
ar_order_Param, 3
                                                session_names_Param, 18
ar_smooth_Param, 3
                                                \verb|summary.BfMRI_design|, 18|
                                                surfaces_Param_BayesGLM, 19
BOLD_Param_BayesGLM, 3
brainstructures_Param_BayesGLM, 4
                                                TR_Param_BayesGLM, 19
                                                verbose_Param, 19
cderiv, 4
                                                view_xifti, 15
Connectome_Workbench_Description, 5
design_Param_BayesGLM, 5
do_QC, 5
faces_Param, 6
field_names_Param, 6
hpf_Param_BayesGLM, 7
HRF96, 7
HRF_calc, 8, 11
HRF_main, 9
make_design, 9
mask_Param_vertices, 11
mean_var_Tol_Param, 12
multiGLM, 12
multiGLM_fun, 14
nuisance_Param_BayesGLM, 15
plot.BfMRI_design, 15
plot_design, 15, 16
plot_design_image (plot_design), 16
plot_design_line (plot_design), 16
print.BfMRI_design
        (summary.BfMRI_design), 18
print.summary.BfMRI_design
        (summary.BfMRI_design), 18
resamp_res_Param_BayesGLM, 17
scale_BOLD_Param, 17
```