--- title: "Welcome to hmsidwR!" description: "this package is supporting the book" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{hmsidwR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE ) options(rmarkdown.html_vignette.check_title = FALSE) ``` ## Setup ```{r eval=FALSE} # install.packages("devtools") devtools::install_github("Fgazzelloni/hmsidwR") ``` ```{r} library(hmsidwR) ``` This package provides the set of data used in the **Health Metrics and the Spread of Infectious Diseases Machine Learning Applications and Spatial Modeling Analysis** book. ## Load Sample Data ```{r} hmsidwR::sdi90_19 |> head() ``` ```{r} hmsidwR::deaths2019 |> head() ``` ## Make a Plot ```{r} library(tidyverse) id <- hmsidwR::id_affected_countries %>% ggplot(aes( x = year, group = location_name )) + geom_line(aes(y = YLLs), linewidth = 0.2, color = "grey" ) + geom_line( data = id_affected_countries %>% filter(location_name %in% c( "Lesotho", "Eswatini", "Malawi", "Central African Republic", "Zambia" )), aes(y = YLLs, color = location_name) ) + theme_minimal() + theme(legend.position = "none") + labs( title = "Countries with highest AVG YLLs", subtitle = "due to infectious diseases from 1990 to 2021", caption = "DataSource: IHME GBD Results for infectious diseases deaths and YLLs 1980 to 1999", x = "Year", y = "DALYs" ) # add a plotly version library(plotly) plotly::ggplotly(id) ```