
Package ‘gsDesignTune’
February 4, 2026

Title Dependency-Aware Scenario Exploration for Group Sequential
Designs

Version 0.1.0

Description Provides systematic, dependency-aware exploration of
group sequential designs created with 'gsDesign'.
Supports reproducible grid and random search over user-defined
candidate sets, parallel evaluation via the 'future' framework,
standardized metric extraction, and auditable reporting for
design-space evaluation and trade-off analysis.
Methods for group sequential design are described in
Anderson (2025) <doi:10.32614/CRAN.package.gsDesign>.
The 'future' framework for parallel processing is described in
Bengtsson (2021) <doi:10.32614/RJ-2021-048>.

License MIT + file LICENSE

URL https://nanx.me/gsDesignTune/,

https://github.com/nanxstats/gsDesignTune

BugReports https://github.com/nanxstats/gsDesignTune/issues

Encoding UTF-8

Depends R (>= 4.1.0)

Imports digest, future.apply, ggplot2, gsDesign, progressr, R6, rlang

Suggests future, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.3

NeedsCompilation no

Author Nan Xiao [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-0250-5673>)

Maintainer Nan Xiao <me@nanx.me>

Repository CRAN

Date/Publication 2026-02-04 18:10:08 UTC

1

https://doi.org/10.32614/CRAN.package.gsDesign
https://doi.org/10.32614/RJ-2021-048
https://nanx.me/gsDesignTune/
https://github.com/nanxstats/gsDesignTune
https://github.com/nanxstats/gsDesignTune/issues
https://orcid.org/0000-0002-0250-5673

2 gsDesignTune

Contents
gsDesignTune . 2
GSDTuneJob . 3
gsSurvCalendarTune . 6
gsSurvTune . 7
SpendingFamily . 8
SpendingSpec . 9
spending_specs . 10
toString.function . 10
tune_choice . 11
tune_dep . 11
tune_fixed . 12
tune_int . 12
tune_seq . 13
tune_specs . 13
tune_values . 14

Index 15

gsDesignTune Create a tune job for gsDesign::gsDesign()

Description

gsDesignTune() is a drop-in replacement for gsDesign::gsDesign() that returns a tune job ob-
ject instead of immediately running a single design.

Usage

gsDesignTune(..., upper = NULL, lower = NULL)

Arguments

... Arguments to gsDesign::gsDesign(). Any argument can be replaced by a
tune_*() specification.

upper, lower Optional spending specifications provided as SpendingSpec or SpendingFamily.
When supplied, these are translated to the underlying (sfu, sfupar) / (sfl, sflpar)
arguments.

Details

Any argument can be replaced by a tuning specification created by tune_*(). Use SpendingSpec
/ SpendingFamily via upper= and lower= for dependency-aware spending function tuning.

Value

A GSDTuneJob R6 object.

GSDTuneJob 3

Examples

job <- gsDesignTune(
k = 3,
test.type = 4,
alpha = tune_values(list(0.025, 0.03))

)

job$run(strategy = "grid", parallel = FALSE, seed = 1)
utils::head(job$results())

GSDTuneJob GSDTuneJob

Description

GSDTuneJob

GSDTuneJob

Details

R6 class representing a dependency-aware tuning job for group sequential designs created by gsDesign::gsDesign()
or gsDesign::gsSurv().

Value

An R6 class generator. Use $new() to create a GSDTuneJob object.

Public fields

target Target design function name ("gsDesign" or "gsSurv").

base_args Named list of fixed arguments passed to the target function.

tune_specs Named list of tuning specifications for explored arguments.

param_space Internal parameter space used for configuration generation.

spec Audit record including base/tuned args and sessionInfo().

Methods

Public methods:
• GSDTuneJob$new()

• GSDTuneJob$run()

• GSDTuneJob$results()

• GSDTuneJob$summarize()

• GSDTuneJob$design()

• GSDTuneJob$call_args()

4 GSDTuneJob

• GSDTuneJob$best()

• GSDTuneJob$pareto()

• GSDTuneJob$plot()

• GSDTuneJob$report()

• GSDTuneJob$clone()

Method new(): Create a new tune job.

Usage:
GSDTuneJob$new(target = c("gsDesign", "gsSurv", "gsSurvCalendar"), args)

Arguments:
target Target function name ("gsDesign", "gsSurv", or "gsSurvCalendar").
args Named list of evaluated arguments.

Method run(): Evaluate configurations under a search strategy.

Usage:
GSDTuneJob$run(
strategy = c("grid", "random"),
n = NULL,
parallel = TRUE,
seed = NULL,
cache_dir = NULL,
metrics_fun = NULL

)

Arguments:
strategy Search strategy ("grid" or "random").
n Number of configurations for random search.
parallel Whether to evaluate configurations in parallel.
seed Optional seed for reproducibility.
cache_dir Optional directory to cache design objects as RDS.
metrics_fun Optional metric hook.

Method results(): Return the results data.frame.

Usage:
GSDTuneJob$results()

Method summarize(): Summarize the run (counts + numeric metric summaries).

Usage:
GSDTuneJob$summarize()

Method design(): Retrieve a design object for configuration i.

Usage:
GSDTuneJob$design(i)

Arguments:
i Row index of the configuration.

GSDTuneJob 5

Method call_args(): Return the underlying argument list for configuration i.
Usage:
GSDTuneJob$call_args(i)

Arguments:
i Row index of the configuration.

Method best(): Rank configurations by a metric (with optional constraints).
Usage:
GSDTuneJob$best(metric, direction = c("min", "max"), constraints = NULL)

Arguments:
metric Metric column name.
direction Ranking direction ("min" or "max").
constraints Optional constraints (function or expression).

Method pareto(): Compute a Pareto (non-dominated) set for multiple metrics.
Usage:
GSDTuneJob$pareto(metrics, directions)

Arguments:
metrics Metric column names.
directions Directions for each metric ("min"/"max").

Method plot(): Create a quick exploration plot.
Usage:
GSDTuneJob$plot(metric, x, color = NULL, facet = NULL)

Arguments:
metric Y-axis metric column name.
x X-axis column name.
color Optional color column name.
facet Optional faceting column name.

Method report(): Render an HTML report.
Usage:
GSDTuneJob$report(path)

Arguments:
path Output HTML file path.

Method clone(): The objects of this class are cloneable with this method.
Usage:
GSDTuneJob$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

job <- GSDTuneJob$new(target = "gsDesign", args = list(k = 3, alpha = 0.025))
job$spec$target

6 gsSurvCalendarTune

gsSurvCalendarTune Create a tune job for gsDesign::gsSurvCalendar()

Description

gsSurvCalendarTune() is a drop-in replacement for gsDesign::gsSurvCalendar() that returns
a tune job object instead of immediately running a single design.

Usage

gsSurvCalendarTune(..., upper = NULL, lower = NULL)

Arguments

... Arguments to gsDesign::gsSurvCalendar(). Any argument can be replaced
by a tune_*() specification.

upper, lower Optional spending specifications provided as SpendingSpec or SpendingFamily.
When supplied, these are translated to the underlying (sfu, sfupar) / (sfl, sflpar)
arguments.

Details

Any argument can be replaced by a tuning specification created by tune_*(). Use SpendingSpec
/ SpendingFamily via upper= and lower= for dependency-aware spending function tuning.

Value

A GSDTuneJob R6 object.

Examples

job <- gsSurvCalendarTune(
calendarTime = tune_values(list(c(12, 24, 36), c(12, 24, 48))),
spending = c("information", "calendar")

)

job$run(strategy = "grid", parallel = FALSE, seed = 1)
utils::head(job$results())

gsSurvTune 7

gsSurvTune Create a tune job for gsDesign::gsSurv()

Description

gsSurvTune() is a drop-in replacement for gsDesign::gsSurv() that returns a tune job object
instead of immediately running a single design.

Usage

gsSurvTune(..., upper = NULL, lower = NULL)

Arguments

... Arguments to gsDesign::gsSurv(). Any argument can be replaced by a tune_*()
specification.

upper, lower Optional spending specifications provided as SpendingSpec or SpendingFamily.
When supplied, these are translated to the underlying (sfu, sfupar) / (sfl, sflpar)
arguments.

Details

Any argument can be replaced by a tuning specification created by tune_*(). Use SpendingSpec
/ SpendingFamily via upper= and lower= for dependency-aware spending function tuning.

Value

A GSDTuneJob R6 object.

Examples

job <- gsSurvTune(
k = 3,
test.type = 4,
hr = tune_values(list(0.6, 0.7))

)

job$run(strategy = "grid", parallel = FALSE, seed = 1)
utils::head(job$results())

8 SpendingFamily

SpendingFamily SpendingFamily

Description

SpendingFamily

SpendingFamily

Details

An R6 class representing a set of spending function specifications. Each family member is a
SpendingSpec.

Value

An R6 class generator. Use $new() to create a SpendingFamily object.

Public fields

members List of SpendingSpec objects.

Methods

Public methods:

• SpendingFamily$new()

• SpendingFamily$expand()

• SpendingFamily$clone()

Method new(): Create a new spending family from one or more SpendingSpec.

Usage:
SpendingFamily$new(...)

Arguments:

... SpendingSpec objects.

Method expand(): Expand all members to spending settings.

Usage:
SpendingFamily$expand()

Method clone(): The objects of this class are cloneable with this method.

Usage:
SpendingFamily$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SpendingSpec 9

Examples

fam <- SpendingFamily$new(
SpendingSpec$new(gsDesign::sfHSD, par = tune_fixed(-4)),
SpendingSpec$new(gsDesign::sfLDOF, par = tune_fixed(0))

)
fam$expand()

SpendingSpec SpendingSpec

Description

SpendingSpec

SpendingSpec

Details

An R6 class representing a single spending function (fun) and a tuning specification for its param-
eter (par).

Value

An R6 class generator. Use $new() to create a SpendingSpec object.

Public fields

fun Spending function (callable with signature (alpha, t, param)).

fun_label Label captured from the constructor call (used for plotting).

par Tuning specification for the spending parameter.

Methods

Public methods:
• SpendingSpec$new()

• SpendingSpec$expand()

• SpendingSpec$clone()

Method new(): Create a new spending specification.

Usage:
SpendingSpec$new(fun, par = tune_fixed(NULL))

Arguments:

fun Spending function.
par Spending parameter specification.

Method expand(): Expand to a list of spending settings (fun + concrete parameter values).

10 toString.function

Usage:
SpendingSpec$expand()

Method clone(): The objects of this class are cloneable with this method.
Usage:
SpendingSpec$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

spec <- SpendingSpec$new(gsDesign::sfHSD, par = tune_seq(-4, -2, length_out = 2))
spec$expand()

spending_specs Spending function specifications

Description

SpendingSpec and SpendingFamily provide a dependency-aware and user-friendly way to tune
spending functions and their parameters.

toString.function Convert a function to a short label string

Description

gsDesignTune() uses function-valued columns (for example, spending functions) in results tables.
This method provides a stable, readable label for such functions to keep printing and plotting robust.

Usage

S3 method for class '`function`'
toString(x, ...)

Arguments

x A function.
... Unused (included for S3 method compatibility).

Value

A character scalar.

Examples

toString(stats::rnorm)

tune_choice 11

tune_choice Categorical choices

Description

tune_choice() defines a finite set of categorical choices. Each argument in ... is treated as one
choice (including functions and other objects).

Usage

tune_choice(...)

Arguments

... Candidate values.

Value

A gstune_spec object.

Examples

tune_choice("A", "B")

tune_dep Dependent tuning specification

Description

tune_dep() defines candidates for one argument as a function of other arguments.

Usage

tune_dep(depends_on, map)

Arguments

depends_on Character vector of argument names this specification depends on.

map A function returning either a tune_*() specification or a fixed value. The func-
tion should have arguments matching depends_on (or use ...).

Value

A gstune_spec object.

12 tune_int

Examples

sfupar depends on sfu
tune_dep(

depends_on = "sfu",
map = function(sfu) {
if (identical(sfu, gsDesign::sfLDOF)) tune_fixed(0) else tune_seq(-4, 4, 9)

}
)

tune_fixed Fixed (non-tuned) value

Description

Use tune_fixed() to explicitly mark a value as fixed. This is mainly useful inside dependent
specifications such as tune_dep().

Usage

tune_fixed(x)

Arguments

x Any R object.

Value

A gstune_spec object.

Examples

tune_fixed(0.025)

tune_int Integer sequence candidates

Description

Integer sequence candidates

Usage

tune_int(from, to, by = 1)

tune_seq 13

Arguments

from, to Integer scalars.

by Integer scalar step size.

Value

A gstune_spec object.

Examples

tune_int(2, 5)

tune_seq Numeric sequence candidates

Description

Numeric sequence candidates

Usage

tune_seq(from, to, length_out)

Arguments

from, to Numeric scalars.

length_out Integer scalar, the number of candidates.

Value

A gstune_spec object.

Examples

tune_seq(0.55, 0.75, length_out = 5)

tune_specs Tune specifications

Description

gsDesignTune() and gsSurvTune() treat most arguments as fixed values. Wrap an argument in a
tune_*() specification to explore candidate values.

14 tune_values

tune_values Explicit candidate values

Description

tune_values() defines a finite set of candidate values. Values are provided as a list so vector-
valued candidates (for example, timing) are treated as atomic.

Usage

tune_values(values)

Arguments

values A list of candidate values.

Value

A gstune_spec object.

Examples

tune_values(list(0.55, 0.65, 0.75))
tune_values(list(c(0.33, 0.67, 1), c(0.5, 0.75, 1)))

Index

gsDesign::gsDesign(), 2, 3
gsDesign::gsSurv(), 3, 7
gsDesign::gsSurvCalendar(), 6
gsDesignTune, 2
gsDesignTune(), 10
GSDTuneJob, 3
gsSurvCalendarTune, 6
gsSurvTune, 7

spending_specs, 10
SpendingFamily, 8
SpendingSpec, 9

toString.function, 10
tune_choice, 11
tune_dep, 11
tune_fixed, 12
tune_int, 12
tune_seq, 13
tune_specs, 13
tune_values, 14

15

	gsDesignTune
	GSDTuneJob
	gsSurvCalendarTune
	gsSurvTune
	SpendingFamily
	SpendingSpec
	spending_specs
	toString.function
	tune_choice
	tune_dep
	tune_fixed
	tune_int
	tune_seq
	tune_specs
	tune_values
	Index

