
Package ‘gsDesignNB’
February 16, 2026

Version 0.2.6

Title Sample Size and Simulation for Negative Binomial Outcomes

Description Provides tools for planning and simulating recurrent event trials
with overdispersed count endpoints analyzed using negative binomial (or
Poisson) rate models. Implements sample size and power calculations for
fixed designs with variable accrual, dropout, maximum follow-up, and event
gaps, including methods of Zhu and Lakkis (2014) <doi:10.1002/sim.5947> and
Friede and Schmidli (2010) <doi:10.3414/ME09-02-0060>. Supports group
sequential designs by adding calendar-time analysis schedules compatible
with the 'gsDesign' package and by estimating blinded information at
interim looks. Includes simulation utilities for recurrent events
(including seasonal rates), interim data truncation, and Wald-based
inference for treatment rate ratios.

License GPL (>= 3)

URL https://keaven.github.io/gsDesignNB/,

https://github.com/keaven/gsDesignNB

BugReports https://github.com/keaven/gsDesignNB/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports data.table, gsDesign, simtrial, stats, MASS

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ggplot2, dplyr, gt,
scales

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.3

NeedsCompilation no

Author Keaven Anderson [aut, cre],
Nan Xiao [ctb],
Hongtao Zhang [ctb],
Merck & Co., Inc., Rahway, NJ, USA and its affiliates [cph] (ROR:
<https://ror.org/02891sr49>)

1

https://doi.org/10.1002/sim.5947
https://doi.org/10.3414/ME09-02-0060
https://keaven.github.io/gsDesignNB/
https://github.com/keaven/gsDesignNB
https://github.com/keaven/gsDesignNB/issues
https://ror.org/02891sr49

2 blinded_ssr

Maintainer Keaven Anderson <keaven_anderson@merck.com>

Repository CRAN

Date/Publication 2026-02-16 17:40:09 UTC

Contents

blinded_ssr . 2
calculate_blinded_info . 4
check_gs_bound . 6
compute_info_at_time . 7
cut_completers . 8
cut_data_by_date . 9
cut_date_for_completers . 10
estimate_nb_mom . 11
get_analysis_date . 12
get_cut_date . 13
gsNBCalendar . 14
mutze_test . 16
nb_sim . 18
nb_sim_seasonal . 20
print.gsNBsummary . 21
print.sample_size_nbinom_result . 22
print.sample_size_nbinom_summary . 22
sample_size_nbinom . 23
sim_gs_nbinom . 25
summarize_gs_sim . 28
summary.gsNB . 29
summary.sample_size_nbinom_result . 29
toInteger . 30
unblinded_ssr . 31

Index 34

blinded_ssr Blinded sample size re-estimation for recurrent events

Description

Estimates the blinded dispersion and event rate from aggregated interim data and calculates the
required sample size to maintain power, assuming the planned treatment effect holds. This function
supports constant rates (Friede & Schmidli 2010) and accommodates future extensions for time-
varying rates (Schneider et al. 2013) by using the exposure-adjusted rate.

blinded_ssr 3

Usage

blinded_ssr(
data,
ratio = 1,
lambda1_planning,
lambda2_planning,
rr0 = 1,
power = 0.8,
alpha = 0.025,
method = "friede",
accrual_rate,
accrual_duration,
trial_duration,
dropout_rate = 0,
max_followup = NULL,
event_gap = NULL

)

Arguments

data A data frame containing the blinded interim data. Must include columns events
(number of events) and tte (total exposure/follow-up time). This is typically the
output of cut_data_by_date().

ratio Planned allocation ratio (experimental / control). Default is 1.

lambda1_planning

Planned event rate for the control group used in original calculation.

lambda2_planning

Planned event rate for the experimental group used in original calculation.

rr0 Rate ratio under the null hypothesis (lambda2/lambda1). Default is 1.

power Target power (1 - beta). Default is 0.8.

alpha One-sided significance level. Default is 0.025.

method Method for sample size recalculation. Currently "friede" (Friede & Schmidli
2010) is implemented, which uses the blinded nuisance parameter estimates.

accrual_rate Vector of accrual rates (patients per unit time).

accrual_duration

Vector of durations for each accrual rate. Must be same length as accrual_rate.

trial_duration Total planned duration of the trial.

dropout_rate Dropout rate (hazard rate). Default is 0.

max_followup Maximum follow-up time for any patient. Default is NULL (infinite).

event_gap Gap duration after each event during which no new events are counted. Default
is NULL (no gap).

4 calculate_blinded_info

Value

A list containing:

n_total_blinded Re-estimated total sample size using blinded estimates.

dispersion_blinded Estimated dispersion parameter (k) from blinded data.

lambda_blinded Estimated overall event rate from blinded data.

info_fraction Estimated information fraction at interim (blinded information / target information).

blinded_info Estimated statistical information from the blinded interim data.

target_info Target statistical information required for the planned power.

References

Friede, T., & Schmidli, H. (2010). Blinded sample size reestimation with count data: methods and
applications in multiple sclerosis. Statistics in Medicine, 29(10), 1145–1156. doi:10.1002/sim.3861

Schneider, S., Schmidli, H., & Friede, T. (2013). Blinded sample size re-estimation for recurrent
event data with time trends. Statistics in Medicine, 32(30), 5448–5457. doi:10.1002/sim.5977

Examples

interim <- data.frame(events = c(1, 2, 1, 3), tte = c(0.8, 1.0, 1.2, 0.9))
blinded_ssr(

interim,
ratio = 1,
lambda1_planning = 0.5,
lambda2_planning = 0.3,
power = 0.8,
alpha = 0.025,
accrual_rate = 10,
accrual_duration = 12,
trial_duration = 18

)

calculate_blinded_info

Calculate blinded statistical information

Description

Estimates the blinded dispersion and event rate from aggregated interim data and calculates the
observed statistical information for the log rate ratio, assuming the planned allocation ratio and
treatment effect.

https://doi.org/10.1002/sim.3861
https://doi.org/10.1002/sim.5977

calculate_blinded_info 5

Usage

calculate_blinded_info(
data,
ratio = 1,
lambda1_planning,
lambda2_planning,
event_gap = NULL

)

Arguments

data A data frame containing the blinded interim data. Must include columns events
(number of events) and tte (total exposure=follow-up time).

ratio Planned allocation ratio (experimental / control). Default is 1.

lambda1_planning

Planned event rate for the control group.

lambda2_planning

Planned event rate for the experimental group.

event_gap Optional. Gap duration (numeric) to adjust planning rates if provided. If pro-
vided, planning rates are adjusted as lambda / (1 + lambda * gap).

Value

A list containing:

blinded_info Estimated statistical information.

dispersion_blinded Estimated dispersion parameter (k).

lambda_blinded Estimated overall event rate.

lambda1_adjusted Re-estimated control rate.

lambda2_adjusted Re-estimated experimental rate.

Examples

interim <- data.frame(events = c(1, 2, 1, 3), tte = c(0.8, 1.0, 1.2, 0.9))
calculate_blinded_info(

interim,
ratio = 1,
lambda1_planning = 0.5,
lambda2_planning = 0.3

)

6 check_gs_bound

check_gs_bound Check group sequential bounds

Description

Updates the group sequential design boundaries based on observed information and checks if
boundaries have been crossed.

Usage

check_gs_bound(sim_results, design, info_scale = c("blinded", "unblinded"))

Arguments

sim_results Data frame of simulation results (from sim_gs_nbinom()).

design The planning gsNB object.

info_scale Character. "blinded" (default) or "unblinded" information to use for bounds.

Value

A data frame with added columns:

cross_upper Logical, true if upper bound crossed (efficacy)

cross_lower Logical, true if lower bound crossed (futility)

Examples

design <- gsDesign::gsDesign(k = 2, n.fix = 100, test.type = 2, timing = c(0.5, 1))
sim_df <- data.frame(

sim = c(1, 1, 2, 2),
analysis = c(1, 2, 1, 2),
z_stat = c(2.5, NA, -0.2, 2.2),
blinded_info = c(50, 100, 50, 100),
unblinded_info = c(50, 100, 50, 100)

)
check_gs_bound(sim_df, design)

compute_info_at_time 7

compute_info_at_time Compute statistical information at analysis time

Description

Computes the statistical information for the log rate ratio at a given analysis time, accounting for
staggered enrollment and varying exposure times.

Usage

compute_info_at_time(
analysis_time,
accrual_rate,
accrual_duration,
lambda1,
lambda2,
dispersion,
ratio = 1,
dropout_rate = 0,
event_gap = 0,
max_followup = Inf

)

Arguments

analysis_time The calendar time of the analysis.

accrual_rate The enrollment rate (subjects per time unit).
accrual_duration

The duration of the enrollment period.

lambda1 Event rate for group 1 (control).

lambda2 Event rate for group 2 (treatment).

dispersion The negative binomial dispersion parameter.

ratio Allocation ratio (n2/n1). Default is 1.

dropout_rate Dropout rate (hazard rate). Default is 0.

event_gap Gap duration after each event during which no new events are counted. Default
is 0.

max_followup Maximum follow-up time per subject. Exposure time is truncated at this value.
Default is Inf (no truncation).

Value

The statistical information (inverse of variance) at the analysis time.

8 cut_completers

Examples

compute_info_at_time(
analysis_time = 12,
accrual_rate = 10,
accrual_duration = 10,
lambda1 = 0.5,
lambda2 = 0.3,
dispersion = 0.1

)

cut_completers Cut data for completers analysis

Description

Subsets the data to all subjects randomized by the specified date, and prepares the data for analysis.
This is a wrapper for cut_data_by_date() typically used with a date determined by cut_date_for_completers().

Usage

cut_completers(data, cut_date, event_gap = 0)

Arguments

data Data generated by nb_sim().

cut_date Calendar time (relative to trial start) at which to cut the data.

event_gap Gap duration after each event during which no new events are counted. Can be
a numeric value (default 0) or a function returning a numeric value. The time at
risk is reduced by the sum of these gaps (truncated by the cut date).

Value

A data frame with one row per subject randomized prior to cut_date. Contains the truncated
follow-up time (tte) and total number of observed events (events).

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 20)
Find date when 5 subjects have completed
date_5 <- cut_date_for_completers(sim, 5)
Get analysis dataset for this cut date (includes partial follow-up)
cut_completers(sim, date_5)

cut_data_by_date 9

cut_data_by_date Cut simulated trial data at a calendar date

Description

Censors follow-up at a specified calendar time and aggregates events per subject. Returns one row
per subject randomized before the cut date, with the total number of observed events and follow-up
times.

Usage

cut_data_by_date(data, cut_date, event_gap = 0, ...)

Default S3 method:
cut_data_by_date(data, cut_date, event_gap = 0, ...)

S3 method for class 'nb_sim_data'
cut_data_by_date(data, cut_date, event_gap = 0, ...)

S3 method for class 'nb_sim_seasonal'
cut_data_by_date(data, cut_date, event_gap = 0, ...)

Arguments

data Data generated by nb_sim().

cut_date Calendar time (relative to trial start) at which to censor follow-up.

event_gap Gap duration after each event during which no new events are counted. Can be
a numeric value (default 0) or a function returning a numeric value. The time at
risk is reduced by the sum of these gaps (truncated by the cut date).

... Additional arguments passed to methods.

Value

A data frame with one row per subject randomized prior to cut_date containing:

id Subject identifier

treatment Treatment group

enroll_time Time of enrollment relative to trial start

tte Time at risk (total follow-up minus event gap periods)

tte_total Total follow-up time (calendar time, not adjusted for gaps)

events Number of observed events

A data frame with one row per subject randomized prior to cut_date. This method stops with an
error for unsupported classes.

10 cut_date_for_completers

A data frame with one row per subject randomized prior to cut_date. Includes total events and
follow-up time within the cut window.

A data frame with one row per subject randomized prior to cut_date. Includes season and follow-
up time within the cut window.

Methods (by class)

• cut_data_by_date(default): Default method.

• cut_data_by_date(nb_sim_data): Method for nb_sim data.

• cut_data_by_date(nb_sim_seasonal): Method for nb_sim_seasonal data.

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 20)
cut_data_by_date(sim, cut_date = 1)

cut_date_for_completers

Find calendar date for target completer count

Description

Finds the calendar time (since start of randomization) at which a specified number of subjects have
completed their follow-up.

Usage

cut_date_for_completers(data, target_completers)

Arguments

data A data frame of simulated data, typically from nb_sim() or nb_sim_seasonal().
target_completers

Integer. The target number of completers.

Value

Numeric. The calendar date when target_completers is achieved. If the dataset contains fewer
than target_completers completers, returns the maximum calendar time in the dataset and prints
a message.

estimate_nb_mom 11

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 20)
cut_date_for_completers(sim, target_completers = 5)

estimate_nb_mom Method of Moments Estimation for Negative Binomial Parameters

Description

Estimates the event rate(s) and common dispersion parameter (k) for negative binomial count data
using the method of moments. This is a robust alternative to Maximum Likelihood Estimation
(MLE), especially when MLE fails to converge or produces boundary estimates.

Usage

estimate_nb_mom(data, group = NULL)

Arguments

data A data frame containing the data. Must include columns events (number of
events) and tte (total exposure/follow-up time).

group Optional character string specifying the grouping column name (e.g., "treat-
ment"). If provided, rates are estimated separately for each group, while a
common dispersion parameter is estimated across groups. If NULL (default),
a single rate and dispersion are estimated (blinded case).

Details

The method of moments estimator for the dispersion parameter k is derived by equating the theo-
retical variance to the observed second central moment, accounting for varying exposure times.

For a given group with rate λ, the expected count for subject i is µi = λti. The variance is
Vi = µi + kµ2

i . The estimator is calculated as:

k̂ = max

(
0,

∑
(yi − µ̂i)

2 −
∑

yi∑
µ̂2
i

)
where yi is the number of events, ti is the exposure time, and µ̂i = λ̂ti is the estimated expected
count.

When multiple groups are present, the numerator and denominator are summed across all groups to
estimate a common k.

12 get_analysis_date

Value

A list containing:

lambda Estimated event rate(s). A single numeric value if group is NULL, or a named
vector if group is provided.

dispersion Estimated common dispersion parameter (k).

Examples

Blinded estimation (single group)
df <- data.frame(events = c(1, 2, 0, 3), tte = c(1, 1.2, 0.5, 1.5))
estimate_nb_mom(df)

Unblinded estimation (two groups)
df_group <- df
df_group$group <- c("A", "A", "B", "B")
estimate_nb_mom(df_group, group = "group")

get_analysis_date Find calendar date for target event count

Description

Finds the calendar time (since start of randomization) at which a specified total number of events is
reached in the simulated dataset.

Usage

get_analysis_date(data, planned_events, event_gap = 5/365.25)

Arguments

data A data frame of simulated data, typically from nb_sim().

planned_events Integer. The target number of events.

event_gap Gap duration after each event during which no new events are counted. Can be
a numeric value (default 5 / 365.25) or a function returning a numeric value.

Value

Numeric. The calendar date when planned_events is achieved. If the dataset contains fewer than
planned_events, returns the maximum calendar time in the dataset and prints a message.

get_cut_date 13

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 40)
get_analysis_date(sim, planned_events = 15)

get_cut_date Determine analysis date based on criteria

Description

Finds the earliest calendar date at which all specified criteria are met. Criteria can include a specific
calendar date, a target number of events, a target number of completers, or a target amount of
blinded information.

Usage

get_cut_date(
data,
planned_calendar = NULL,
target_events = NULL,
target_completers = NULL,
target_info = NULL,
event_gap = 0,
ratio = 1,
lambda1 = NULL,
lambda2 = NULL,
min_date = 0,
max_date = Inf

)

Arguments

data A data frame of simulated data (from nb_sim()).
planned_calendar

Numeric. Target calendar time.

target_events Integer. Target number of observed events.
target_completers

Integer. Target number of subjects with complete follow-up.

target_info Numeric. Target blinded information.

event_gap Numeric. Gap duration for event counting and info calculation.

ratio Numeric. Randomization ratio (experimental/control) for info calculation.

14 gsNBCalendar

lambda1 Numeric. Planned control rate for info calculation.
lambda2 Numeric. Planned experimental rate for info calculation.
min_date Numeric. Minimum possible date (e.g., 0 or previous analysis time).
max_date Numeric. Maximum possible date (e.g., trial duration).

Value

Numeric. The calendar date satisfying the criteria. If criteria cannot be met within max_date (or
data limits), returns max_date (or max data time).

Examples

set.seed(456)
enroll_rate <- data.frame(rate = 15, duration = 1)
fail_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.6, 0.4)

)
sim_data <- nb_sim(enroll_rate, fail_rate, max_followup = 1, n = 20)
get_cut_date(sim_data, planned_calendar = 0.5, target_events = 5, event_gap = 0)

gsNBCalendar Group sequential design for negative binomial outcomes

Description

Creates a group sequential design for negative binomial outcomes based on sample size calculations
from sample_size_nbinom().

Usage

gsNBCalendar(
x,
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.1,
astar = 0,
delta = 0,
sfu = gsDesign::sfHSD,
sfupar = -4,
sfl = gsDesign::sfHSD,
sflpar = -2,
tol = 1e-06,
r = 18,
usTime = NULL,
lsTime = NULL,
analysis_times = NULL

)

gsNBCalendar 15

Arguments

x An object of class sample_size_nbinom_result from sample_size_nbinom().

k Number of analyses (interim + final). Default is 3.

test.type Test type as in gsDesign::gsDesign():

1 One-sided
2 Two-sided symmetric
3 Two-sided, asymmetric, binding futility bound, beta-spending
4 Two-sided, asymmetric, non-binding futility bound, beta-spending
5 Two-sided, asymmetric, binding futility bound, lower spending
6 Two-sided, asymmetric, non-binding futility bound, lower spending

Default is 4.

alpha Type I error (one-sided). Default is 0.025.

beta Type II error (1 - power). Default is 0.1.

astar Allocated Type I error for lower bound for test.type = 5 or 6. Default is 0.

delta Standardized effect size. Default is 0 (computed from design).

sfu Spending function for upper bound. Default is gsDesign::sfHSD.

sfupar Parameter for upper spending function. Default is -4.

sfl Spending function for lower bound. Default is gsDesign::sfHSD.

sflpar Parameter for lower spending function. Default is -2.

tol Tolerance for convergence. Default is 1e-06.

r Integer controlling grid size for numerical integration. Default is 18.

usTime Spending time for upper bound (optional).

lsTime Spending time for lower bound (optional).

analysis_times Vector of calendar times for each analysis. Must have length k. These times are
stored in the T element and displayed by gsDesign::gsBoundSummary().

Value

An object of class gsNB which inherits from gsDesign and sample_size_nbinom_result. While
the final sample size would be planned total enrollment, interim analysis sample sizes are the ex-
pected number enrolled at the times specified in analysis_times. Output value contains all ele-
ments from gsDesign::gsDesign() plus:

nb_design The original sample_size_nbinom_result object

n1 A vector with sample size per analysis for group 1

n2 A vector with sample size per analysis for group 2

n_total A vector with total sample size per analysis

events A vector with expected total events per analysis

events1 A vector with expected events per analysis for group 1

events2 A vector with expected events per analysis for group 2

16 mutze_test

exposure A vector with expected average calendar exposure per analysis
exposure_at_risk1 A vector with expected at-risk exposure per analysis for group 1
exposure_at_risk2 A vector with expected at-risk exposure per analysis for group 2
variance A vector with variance of log rate ratio per analysis
T Calendar time at each analysis (if analysis_times provided)

Note that n.I in the returned object represents the statistical information at each analysis.

References

Jennison, C. and Turnbull, B.W. (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Examples

First create a sample size calculation
nb_ss <- sample_size_nbinom(

lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.9,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)

Then create a group sequential design with analysis times
gs_design <- gsNBCalendar(nb_ss,

k = 3, test.type = 4,
analysis_times = c(10, 18, 24)

)

mutze_test Wald test for treatment effect using negative binomial model (Mutze et
al.)

Description

Fits a negative binomial (or Poisson) log-rate model to the aggregated subject-level data produced
by cut_data_by_date(). The method matches the Wald test described by Mutze et al. (2019) for
comparing treatment arms with recurrent event outcomes.

Usage

mutze_test(
data,
method = c("nb", "poisson"),
conf_level = 0.95,
sided = 1,
poisson_threshold = 1000

)

S3 method for class 'mutze_test'
print(x, ...)

mutze_test 17

Arguments

data A data frame with at least the columns treatment, events, and tte (follow-up
time). Typically output from cut_data_by_date().

method Type of model to fit: "nb" (default) uses a negative binomial GLM via MASS::glm.nb(),
"poisson" fits a Poisson GLM.

conf_level Confidence level for the rate ratio interval. Default 0.95.

sided Number of sides for the test: 1 (default) or 2.
poisson_threshold

When method = "nb", the model falls back to Poisson regression if theta (the NB
shape parameter) is outside the range [1/poisson_threshold, poisson_threshold].
Very large theta indicates near-Poisson data, while very small theta indicates ex-
treme overdispersion with unstable estimates. Default is 1000.

x An object of class mutze_test.

... Additional arguments (currently ignored).

Value

An object of class mutze_test containing the fitted model summary with elements:

• method: A string indicating the test method used.

• estimate: log rate ratio (experimental vs control).

• se: standard error for the log rate ratio.

• z: Wald statistic.

• p_value: one-sided or two-sided p-value.

• rate_ratio: estimated rate ratio and its confidence interval.

• dispersion: estimated dispersion (theta) when method = "nb".

• group_summary: observed subjects/events/exposure per treatment.

Invisibly returns the input object.

Methods (by generic)

• print(mutze_test): Print method for mutze_test objects.

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 40)
cut <- cut_data_by_date(sim, cut_date = 1.5)
mutze_test(cut)

18 nb_sim

nb_sim Simulate recurrent events with fixed follow-up

Description

Simulates recurrent events for a clinical trial with piecewise constant enrollment, exponential failure
rates (Poisson process), and piecewise exponential dropout.

Usage

nb_sim(
enroll_rate,
fail_rate,
dropout_rate = NULL,
max_followup = NULL,
n = NULL,
block = c(rep("Control", 2), rep("Experimental", 2)),
event_gap = 0

)

Arguments

enroll_rate A data frame with columns rate and duration defining the piecewise constant
enrollment rates.

fail_rate A data frame with columns treatment and rate defining the exponential fail-
ure rate for each treatment group. Optionally, a dispersion column can be
provided to generate data from a negative binomial distribution. The dispersion
parameter k is such that Var(Y) = µ+ kµ2.

dropout_rate A data frame with columns treatment, rate, and duration defining the piece-
wise constant dropout rates.

max_followup Numeric. Maximum duration of follow-up for each individual (relative to their
randomization time).

n Total sample size. If NULL, it is estimated from enroll_rate. If provided,
enrollment stops when n subjects are recruited.

block Block vector for treatment allocation. Default is c(rep("Control", 2), rep("Experimental",
2)). If NULL, simple randomization is used (treatments are assigned with
equal probability). If provided, it specifies the block structure, for example,
c(rep("A", 2), rep("B", 2)) assigns 2 to group A and 2 to group B in each
block.

event_gap Numeric. Gap duration after each event during which no new events are counted.
Default is 0.

nb_sim 19

Details

The simulation generates data consistent with the negative binomial models described by Friede
and Schmidli (2010) and Mütze et al. (2019). Specifically, it simulates a Gamma-distributed frailty
variable for each individual (if dispersion > 0), which acts as a multiplier for that individual’s event
rate. Events are then generated according to a Poisson process with this subject-specific rate.

More explicitly, for a subject with baseline rate λ and exposure time t, the model used here is a
Gamma–Poisson mixture:

Λi ∼ Gamma(shape = 1/k, scale = kλ), Yi | Λi ∼ Poisson(Λit).

Marginally, Yi follows a negative binomial distribution with E[Yi] = µ = λt and Var(Yi) =
µ + kµ2. This k is the package dispersion parameter (and corresponds to 1/θ in MASS::glm.nb()
terminology).

Value

A data frame (tibble) with columns:

id Subject identifier

treatment Treatment group

enroll_time Time of enrollment relative to trial start

tte Time to event or censoring relative to randomization

calendar_time Calendar time of event or censoring (enroll_time + tte)

event Binary indicator: 1 for event, 0 for censoring

Multiple rows per subject are returned (one for each event, plus one for the final censoring time).

References

Friede, T., & Schmidli, H. (2010). Blinded sample size reestimation with count data: methods and
applications in multiple sclerosis. Statistics in Medicine, 29(10), 1145–1156. doi:10.1002/sim.3861

Mütze, T., Glimm, E., Schmidli, H., & Friede, T. (2019). Group sequential designs for negative
binomial outcomes. Statistical Methods in Medical Research, 28(8), 2326–2347. doi:10.1177/
0962280218773115

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(treatment = c("Control", "Experimental"), rate = c(0.5, 0.3))
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.1, 0.05), duration = c(100, 100)

)
sim <- nb_sim(enroll_rate, fail_rate, dropout_rate, max_followup = 2, n = 20)
head(sim)

https://doi.org/10.1002/sim.3861
https://doi.org/10.1177/0962280218773115
https://doi.org/10.1177/0962280218773115

20 nb_sim_seasonal

nb_sim_seasonal Simulate recurrent events with seasonal rates

Description

Simulates recurrent events where event rates depend on the season.

Usage

nb_sim_seasonal(
enroll_rate,
fail_rate,
dropout_rate = NULL,
max_followup = NULL,
randomization_start_date = NULL,
n = NULL,
block = c(rep("Control", 2), rep("Experimental", 2))

)

Arguments

enroll_rate A data frame with columns rate and duration.

fail_rate A data frame with columns treatment, season, rate, and optionally dispersion.
Seasons should be "Spring", "Summer", "Fall", "Winter".

dropout_rate A data frame with columns treatment, rate, duration.

max_followup Numeric. Max follow-up duration (years).
randomization_start_date

Date. Start of randomization.

n Integer. Total sample size.

block Character vector for block randomization.

Value

A data frame of class nb_sim_seasonal with columns: id, treatment, season, enroll_time,
start, end, event, calendar_start, calendar_end. Rows represent intervals of risk or events.
event=1 indicates an event at end. event=0 indicates censoring or end of a seasonal interval at end.

Examples

enroll_rate <- data.frame(rate = 20 / (5 / 12), duration = 5 / 12)
fail_rate <- data.frame(

treatment = rep(c("Control", "Experimental"), each = 4),
season = rep(c("Winter", "Spring", "Summer", "Fall"), times = 2),
rate = c(0.6, 0.5, 0.4, 0.5, 0.4, 0.3, 0.2, 0.3)

)
sim <- nb_sim_seasonal(

print.gsNBsummary 21

enroll_rate = enroll_rate,
fail_rate = fail_rate,
max_followup = 1,
randomization_start_date = as.Date("2020-01-01"),
n = 20

)
head(sim)

print.gsNBsummary Print method for gsNBsummary objects

Description

Print method for gsNBsummary objects

Usage

S3 method for class 'gsNBsummary'
print(x, ...)

Arguments

x An object of class gsNBsummary.

... Additional arguments (currently ignored).

Value

Invisibly returns the input object.

Examples

nb_ss <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.9,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
gs_design <- gsNBCalendar(nb_ss, k = 3, analysis_times = c(12, 18, 24))
s <- summary(gs_design)
print(s)

22 print.sample_size_nbinom_summary

print.sample_size_nbinom_result

Print method for sample_size_nbinom_result objects

Description

Prints a concise summary of the sample size calculation results.

Usage

S3 method for class 'sample_size_nbinom_result'
print(x, ...)

Arguments

x An object of class sample_size_nbinom_result.

... Additional arguments (currently ignored).

Value

Invisibly returns the input object.

Examples

x <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.8,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
print(x)

print.sample_size_nbinom_summary

Print method for sample_size_nbinom_summary objects

Description

Print method for sample_size_nbinom_summary objects

Usage

S3 method for class 'sample_size_nbinom_summary'
print(x, ...)

sample_size_nbinom 23

Arguments

x An object of class sample_size_nbinom_summary.

... Additional arguments (currently ignored).

Value

Invisibly returns the input object.

Examples

x <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.8,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
s <- summary(x)
print(s)

sample_size_nbinom Sample size calculation for negative binomial distribution

Description

Computes the sample size for comparing two treatment groups assuming a negative binomial dis-
tribution for the outcome.

Usage

sample_size_nbinom(
lambda1,
lambda2,
dispersion,
power = NULL,
alpha = 0.025,
sided = 1,
ratio = 1,
rr0 = 1,
accrual_rate,
accrual_duration,
trial_duration,
dropout_rate = 0,
max_followup = NULL,
event_gap = NULL

)

24 sample_size_nbinom

Arguments

lambda1 Rate in group 1 (control).
lambda2 Rate in group 2 (treatment).
dispersion Dispersion parameter k such that Var(Y) = µ+kµ2. Note that this is equivalent

to 1/size in R’s stats::rnbinom() parameterization.
power Power of the test (1 - beta). Default is 0.9.
alpha Significance level. Default is 0.025.
sided One-sided or two-sided test. 1 for one-sided, 2 for two-sided. Default is 1.
ratio Allocation ratio n2/n1. Default is 1.
rr0 Rate ratio under the null hypothesis (lambda2/lambda1). Default is 1 (superior-

ity). For non-inferiority, use a value > 1 (e.g., 1.1). For super-superiority, use a
value < 1 (e.g., 0.8).

accrual_rate Vector of accrual rates (patients per unit time).
accrual_duration

Vector of durations for each accrual rate. Must be same length as accrual_rate.
trial_duration Total planned duration of the trial. If trial_duration is less than the sum of

accrual_duration, accrual is truncated at trial_duration.
dropout_rate Dropout rate (hazard rate). Default is 0. Can be a vector of length 2.
max_followup Maximum follow-up time for any patient. Default is NULL (infinite).
event_gap Gap duration after each event during which no new events are counted. Default

is NULL (no gap). If provided, the effective event rate is reduced.

Value

An object of class sample_size_nbinom_result, which is a list containing:

inputs Named list of the original function arguments.
n1 Sample size for group 1
n2 Sample size for group 2
n_total Total sample size
alpha Significance level
sided One-sided or two-sided test
power Power of the test
exposure Average exposure time used in calculation (calendar time). Vector of length 2.
exposure_at_risk_n1 Average at-risk exposure time for group 1 (accounts for event gap)
exposure_at_risk_n2 Average at-risk exposure time for group 2 (accounts for event gap)
events_n1 Expected number of events in group 1
events_n2 Expected number of events in group 2
total_events Total expected number of events
variance Variance of the log rate ratio
accrual_rate Accrual rate used in calculation
accrual_duration Accrual duration used in calculation

sim_gs_nbinom 25

References

Zhu, H., & Lakkis, H. (2014). Sample size calculation for comparing two negative binomial rates.
Statistics in Medicine, 33(3), 376–387. doi:10.1002/sim.5947

Friede, T., & Schmidli, H. (2010). Blinded sample size reestimation with negative binomial counts
in superiority and non-inferiority trials. Methods of Information in Medicine, 49(06), 618–624.
doi:10.3414/ME09020060

Mütze, T., Glimm, E., Schmidli, H., & Friede, T. (2019). Group sequential designs for negative
binomial outcomes. Statistical Methods in Medical Research, 28(8), 2326–2347. doi:10.1177/
0962280218773115

See Also

vignette("sample-size-nbinom", package = "gsDesignNB") for a detailed explanation of the
methodology.

Examples

Calculate sample size for lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1
with fixed recruitment of 10/month for 20 months, 24 month trial duration
x <- sample_size_nbinom(

lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.8,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
class(x)
summary(x)

With piecewise accrual
5 patients/month for 3 months, then 10 patients/month for 3 months
Trial ends at month 12.
x2 <- sample_size_nbinom(

lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.8,
accrual_rate = c(5, 10), accrual_duration = c(3, 3),
trial_duration = 12

)
summary(x2)

sim_gs_nbinom Simulate group sequential clinical trial for negative binomial out-
comes

Description

Simulates multiple replicates of a group sequential clinical trial with negative binomial outcomes,
performing interim analyses at specified calendar times.

https://doi.org/10.1002/sim.5947
https://doi.org/10.3414/ME09-02-0060
https://doi.org/10.1177/0962280218773115
https://doi.org/10.1177/0962280218773115

26 sim_gs_nbinom

Usage

sim_gs_nbinom(
n_sims,
enroll_rate,
fail_rate,
dropout_rate = NULL,
max_followup,
event_gap = 0,
analysis_times = NULL,
n_target = NULL,
design = NULL,
data_cut = cut_data_by_date,
cuts = NULL

)

Arguments

n_sims Number of simulations to run.

enroll_rate Enrollment rates (data frame with rate and duration).

fail_rate Failure rates (data frame with treatment, rate, dispersion).

dropout_rate Dropout rates (data frame with treatment, rate, duration).

max_followup Maximum follow-up time.

event_gap Event gap duration.

analysis_times Vector of calendar times for interim and final analyses. Optional if cuts is
provided.

n_target Total sample size to enroll (optional, if not defined by enroll_rate).

design An object of class gsNB or sample_size_nbinom_result. Used to extract plan-
ning parameters (lambda1, lambda2, ratio) for blinded information estimation.

data_cut Function to cut data for analysis. Defaults to cut_data_by_date(). The func-
tion must accept sim_data, cut_date, and event_gap as arguments.

cuts A list of cutting criteria for each analysis. Each element of the list should be a list
of arguments for get_cut_date() (e.g., planned_calendar, target_events,
target_info). If provided, analysis_times is ignored (or used as a fallback
if planned_calendar is missing in a cut).

Value

A data frame containing simulation results for each analysis of each trial. Columns include:

sim Simulation ID

analysis Analysis index

analysis_time Calendar time of analysis

n_enrolled Number of subjects enrolled

n_ctrl Number of subjects in control group

sim_gs_nbinom 27

n_exp Number of subjects in experimental group

events_total Total events observed

events_ctrl Events in control group

events_exp Events in experimental group

exposure_at_risk_ctrl Exposure at risk in control group (adjusted for event gaps)

exposure_at_risk_exp Exposure at risk in experimental group (adjusted for event gaps)

exposure_total_ctrl Total exposure in control group (calendar follow-up)

exposure_total_exp Total exposure in experimental group (calendar follow-up)

z_stat Z-statistic from the Wald test (positive favors experimental if rate ratio < 1)

estimate Estimated log rate ratio from the model

se Standard error of the estimate

method_used Method used for inference ("nb" or "poisson")

dispersion Estimated dispersion parameter from the model

blinded_info Estimated blinded statistical information (ML)

unblinded_info Observed unblinded statistical information (ML)

info_unblinded_ml Observed unblinded statistical information (ML)

info_blinded_ml Estimated blinded statistical information (ML)

info_unblinded_mom Observed unblinded statistical information (Method of Moments)

info_blinded_mom Estimated blinded statistical information (Method of Moments)

Examples

set.seed(123)
enroll_rate <- data.frame(rate = 10, duration = 3)
fail_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.6, 0.4),
dispersion = 0.2

)
dropout_rate <- data.frame(

treatment = c("Control", "Experimental"),
rate = c(0.05, 0.05),
duration = c(6, 6)

)
design <- sample_size_nbinom(

lambda1 = 0.6, lambda2 = 0.4, dispersion = 0.2, power = 0.8,
accrual_rate = enroll_rate$rate, accrual_duration = enroll_rate$duration,
trial_duration = 6

)
cuts <- list(

list(planned_calendar = 2),
list(planned_calendar = 4)

)
sim_results <- sim_gs_nbinom(

n_sims = 2,

28 summarize_gs_sim

enroll_rate = enroll_rate,
fail_rate = fail_rate,
dropout_rate = dropout_rate,
max_followup = 4,
n_target = 30,
design = design,
cuts = cuts

)
head(sim_results)

summarize_gs_sim Summarize group sequential simulation results

Description

Provides a summary of the operating characteristics of the group sequential design based on simu-
lation results.

Usage

summarize_gs_sim(x)

Arguments

x A data frame returned by check_gs_bound() (or sim_gs_nbinom() if bounds
are manually checked). Must contain columns cross_upper, cross_lower.

Value

A list containing:

n_sim Number of simulations
power Overall power (probability of crossing upper bound)
futility Overall futility rate (probability of crossing lower bound and not upper)
analysis_summary Data frame with per-analysis statistics (events, crossings)

Examples

design <- gsDesign::gsDesign(k = 2, n.fix = 80, test.type = 2, timing = c(0.5, 1))
sim_df <- data.frame(

sim = c(1, 1, 2, 2),
analysis = c(1, 2, 1, 2),
z_stat = c(2.4, NA, -0.5, 1.9),
blinded_info = c(40, 80, 40, 80),
unblinded_info = c(40, 80, 40, 80),
n_enrolled = c(30, 60, 30, 60),
events_total = c(12, 25, 10, 22)

)
bounds_checked <- check_gs_bound(sim_df, design)
summarize_gs_sim(bounds_checked)

summary.gsNB 29

summary.gsNB Summary for gsNB objects

Description

Provides a textual summary of a group sequential design for negative binomial outcomes, similar to
the summary provided by gsDesign::gsDesign(). For tabular output, use gsDesign::gsBoundSummary()
directly on the gsNB object.

Usage

S3 method for class 'gsNB'
summary(object, ...)

Arguments

object An object of class gsNB.

... Additional arguments (currently ignored).

Value

A character string summarizing the design (invisibly). The summary is also printed to the console.

Examples

nb_ss <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.9,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
gs_design <- gsNBCalendar(nb_ss, k = 3, analysis_times = c(12, 18, 24))
summary(gs_design)

For tabular bounds summary, use gsBoundSummary() directly:
gsBoundSummary(gs_design)

summary.sample_size_nbinom_result

Summary for sample_size_nbinom_result objects

Description

Provides a textual summary of the sample size calculation for negative binomial outcomes, similar
to the summary for gsNB objects.

30 toInteger

Usage

S3 method for class 'sample_size_nbinom_result'
summary(object, ...)

Arguments

object An object of class sample_size_nbinom_result.

... Additional arguments (currently ignored).

Value

A character string summarizing the design (invisibly). The summary is also printed to the console.

Examples

x <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.8,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
class(x)
summary(x)

toInteger Convert group sequential design to integer sample sizes

Description

Generic function to round sample sizes in a group sequential design to integers. This extends the
gsDesign::toInteger() function from the gsDesign package to work with gsNB objects.

Usage

toInteger(x, ...)

S3 method for class 'gsDesign'
toInteger(x, ratio = x$ratio, roundUpFinal = TRUE, ...)

S3 method for class 'gsNB'
toInteger(x, ratio = xnb_designinputs$ratio, roundUpFinal = TRUE, ...)

Arguments

x An object of class gsNB or gsDesign.

... Additional arguments passed to methods.

ratio Randomization ratio (n2/n1). If an integer is provided, rounding is done to a
multiple of ratio + 1. If ratio < 1 and 1/ratio is an integer (e.g., 1:2 alloca-
tion, ratio = 0.5), rounding is done to a multiple of 1/ratio + 1. Default uses
the ratio from the original design.

unblinded_ssr 31

roundUpFinal If TRUE (default), the final sample size is rounded up to ensure the target is met.
If FALSE, rounding is to the nearest integer.

Details

This function rounds sample sizes at each analysis to integers while maintaining the randomization
ratio and ensuring monotonically increasing sample sizes across analyses. Only the final analysis
sample size is rounded to an integer; interim sample sizes remain as expected (non-integer) values
based on the information fraction.

When analysis_times were provided to gsNBCalendar(), the statistical information (n.I) is re-
computed at each analysis time based on the new sample size and expected exposures.

Value

An object of the same class as input with integer sample sizes.

Methods (by class)

• toInteger(gsDesign): Method for gsDesign objects (calls gsDesign::toInteger()).

• toInteger(gsNB): Method for gsNB objects.

Rounds sample sizes in a group sequential negative binomial design to integers, respecting the
randomization ratio.

Examples

nb_ss <- sample_size_nbinom(
lambda1 = 0.5, lambda2 = 0.3, dispersion = 0.1, power = 0.9,
accrual_rate = 10, accrual_duration = 20, trial_duration = 24

)
gs_design <- gsNBCalendar(nb_ss, k = 3, analysis_times = c(12, 18, 24))
gs_integer <- toInteger(gs_design)

unblinded_ssr Unblinded sample size re-estimation for recurrent events

Description

Estimates the event rates and dispersion from unblinded interim data and calculates the required
sample size to maintain power, assuming the planned treatment effect holds (or using the observed
control rate).

32 unblinded_ssr

Usage

unblinded_ssr(
data,
ratio = 1,
lambda1_planning,
lambda2_planning,
rr0 = 1,
power = 0.8,
alpha = 0.025,
accrual_rate,
accrual_duration,
trial_duration,
dropout_rate = 0,
max_followup = NULL,
event_gap = NULL

)

Arguments

data A data frame containing the unblinded interim data. Must include columns
events (number of events), tte (total exposure/follow-up time), and treatment
(treatment group identifier, e.g., 1 for control, 2 for experimental). This is typi-
cally the output of cut_data_by_date().

ratio Planned allocation ratio (experimental / control). Default is 1.
lambda1_planning

Planned event rate for the control group used in original calculation.
lambda2_planning

Planned event rate for the experimental group used in original calculation.

rr0 Rate ratio under the null hypothesis (lambda2/lambda1). Default is 1.

power Target power (1 - beta). Default is 0.8.

alpha One-sided significance level. Default is 0.025.

accrual_rate Vector of accrual rates (patients per unit time).
accrual_duration

Vector of durations for each accrual rate. Must be same length as accrual_rate.

trial_duration Total planned duration of the trial.

dropout_rate Dropout rate (hazard rate). Default is 0.

max_followup Maximum follow-up time for any patient. Default is NULL (infinite).

event_gap Gap duration after each event during which no new events are counted. Default
is NULL (no gap).

Value

A list containing:

n_total_unblinded Re-estimated total sample size using unblinded estimates.

unblinded_ssr 33

dispersion_unblinded Estimated dispersion parameter (k) from unblinded data.

lambda1_unblinded Estimated control event rate from unblinded data.

lambda2_unblinded Estimated experimental event rate from unblinded data.

info_fraction Estimated information fraction at interim (unblinded information / target informa-
tion).

unblinded_info Estimated statistical information from the unblinded interim data.

target_info Target statistical information required for the planned power.

Examples

interim <- data.frame(
events = c(1, 2, 1, 3),
tte = c(0.8, 1.0, 1.2, 0.9),
treatment = c("Control", "Control", "Experimental", "Experimental")

)
unblinded_ssr(

interim,
ratio = 1,
lambda1_planning = 0.5,
lambda2_planning = 0.3,
power = 0.8,
alpha = 0.025,
accrual_rate = 10,
accrual_duration = 12,
trial_duration = 18

)

Index

blinded_ssr, 2

calculate_blinded_info, 4
check_gs_bound, 6
check_gs_bound(), 28
compute_info_at_time, 7
cut_completers, 8
cut_data_by_date, 9
cut_data_by_date(), 3, 8, 16, 17, 26, 32
cut_date_for_completers, 10
cut_date_for_completers(), 8

estimate_nb_mom, 11

get_analysis_date, 12
get_cut_date, 13
get_cut_date(), 26
gsDesign::gsBoundSummary(), 15, 29
gsDesign::gsDesign(), 15, 29
gsDesign::toInteger(), 30, 31
gsNBCalendar, 14
gsNBCalendar(), 31

MASS::glm.nb(), 17, 19
mutze_test, 16

nb_sim, 18
nb_sim(), 8–10, 12, 13
nb_sim_seasonal, 20
nb_sim_seasonal(), 10

print.gsNBsummary, 21
print.mutze_test (mutze_test), 16
print.sample_size_nbinom_result, 22
print.sample_size_nbinom_summary, 22

sample_size_nbinom, 23
sample_size_nbinom(), 14, 15
sim_gs_nbinom, 25
sim_gs_nbinom(), 6, 28
stats::rnbinom(), 24

summarize_gs_sim, 28
summary.gsNB, 29
summary.sample_size_nbinom_result, 29

toInteger, 30

unblinded_ssr, 31

34

	blinded_ssr
	calculate_blinded_info
	check_gs_bound
	compute_info_at_time
	cut_completers
	cut_data_by_date
	cut_date_for_completers
	estimate_nb_mom
	get_analysis_date
	get_cut_date
	gsNBCalendar
	mutze_test
	nb_sim
	nb_sim_seasonal
	print.gsNBsummary
	print.sample_size_nbinom_result
	print.sample_size_nbinom_summary
	sample_size_nbinom
	sim_gs_nbinom
	summarize_gs_sim
	summary.gsNB
	summary.sample_size_nbinom_result
	toInteger
	unblinded_ssr
	Index

