A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of bilateral generalized-mean index (of which most price indexes are), along with a few important indexes that don’t belong to the generalized-mean family (e.g., superlative quadratic-mean indexes, GEKS). Implements and extends many of the methods in Balk (2008), von der Lippe (2001), and the CPI manual (2020) for bilateral price indexes.

`install.packages("gpindex")`

The development version can be installed from GitHub.

`::install_github("marberts/gpindex") devtools`

The examples here give a brief introduction to how to use the
functionality in this package. The package-level help page
(`package?gpindex`

) gives much more detail.

```
library(gpindex)
# Start with some data on prices and quantities for 6 products
# over 5 periods
price6#> t1 t2 t3 t4 t5
#> 1 1 1.2 1.0 0.8 1.0
#> 2 1 3.0 1.0 0.5 1.0
#> 3 1 1.3 1.5 1.6 1.6
#> 4 1 0.7 0.5 0.3 0.1
#> 5 1 1.4 1.7 1.9 2.0
#> 6 1 0.8 0.6 0.4 0.2
quantity6#> t1 t2 t3 t4 t5
#> 1 1.0 0.8 1.0 1.2 0.9
#> 2 1.0 0.9 1.1 1.2 1.2
#> 3 2.0 1.9 1.8 1.9 2.0
#> 4 1.0 1.3 3.0 6.0 12.0
#> 5 4.5 4.7 5.0 5.6 6.5
#> 6 0.5 0.6 0.8 1.3 2.5
# We'll only need prices and quantities for a few periods
<- price6[[1]]; p1 <- price6[[2]]; p2 <- price6[[3]]
p0 <- price6[[1]]; q1 <- price6[[2]]
q0
# There are functions to calculate all common price indexes,
# like the Laspeyres and Paasche index
laspeyres_index(p1, p0, q0)
#> [1] 1.4
paasche_index(p1, p0, q1)
#> [1] 1.811905
# The underlying mean functions are also available, as usually
# only price relatives and weights are known
<- p0 * q0; s1 <- p1 * q1
s0
arithmetic_mean(p1 / p0, s0)
#> [1] 1.4
harmonic_mean(p1 / p0, s1)
#> [1] 1.811905
# The mean representation of a Laspeyres index makes it easy to
# chain by price-updating the weights
laspeyres_index(p2, p0, q0)
#> [1] 1.05
arithmetic_mean(p1 / p0, s0) *
arithmetic_mean(p2 / p1, update_weights(p1 / p0, s0))
#> [1] 1.05
# The mean representation of a Paasche index makes it easy to
# calculate quote contributions
harmonic_contributions(p1 / p0, s1)
#> [1] 0.02857143 0.71428571 0.04642857 -0.02500000 0.06666667 -0.01904762
# The ideas are the same for more exotic indexes,
# like the Lloyd-Moulton index
# Let's start by making some functions for the Lloyd-Moulton index
# when the elasticity of substitution is -1 (an output index)
<- lm_index(-1)
lm <- generalized_mean(2)
quadratic_mean <- factor_weights(2)
quadratic_update <- contributions(2)
quadratic_contributions
# This index can be calculated as a mean of price relatives
lm(p1, p0, q0)
#> [1] 1.592692
quadratic_mean(p1 / p0, s0)
#> [1] 1.592692
# Chained over time
lm(p2, p0, q0)
#> [1] 1.136515
quadratic_mean(p1 / p0, s0) *
quadratic_mean(p2 / p1, quadratic_update(p1 / p0, s0))
#> [1] 1.136515
# And decomposed to get the contributions of each relative
quadratic_contributions(p1 / p0, s0)
#> [1] 0.03110568 0.51154526 0.04832926 -0.03830484 0.06666667 -0.02665039
```

Balk, B. M. (2008). *Price and Quantity Index Numbers*.
Cambridge University Press.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). *Consumer
Price Index Manual: Theory and Practice*. International Monetary
Fund.

von der Lippe, P. (2001). *Chain Indices: A Study in Price Index
Theory*, Spectrum of Federal Statistics vol. 16. Federal Statistical
Office, Wiesbaden.